
173

13. Development of Hacker-AI Countermeasures

Low-Level Security Separation (L2S2)
We do not have a lot of time to solve our cybersecurity problems. It is con-

ceivable that Hacker-AI is already available in its main features, or it can be
developed quickly - that is the underlying hypothesis of this book. Hacker AI
and its capabilities in waging Cyberwar 2.0 is, for many countries, a threat to
their national security.

The vulnerabilities are all too obvious. Our IT is extremely complex because
of old systems and specialized technologies. Products were often developed
without security, privacy, or unauthorized usage in mind; an example is the In-
ternet of Things (IoT).

It seems hopeless and naïve to assume that we can make our IT safe quickly.
I have argued throughout this book that we have no choice. Therefore, we need
to have a strategy to make progress fast. I believe that putting the mission of
“making our IT safe ASAP” has to come before any other consideration. I pro-
pose that we pursue the following three overlapping phases in parallel:

1. Developing basic Low-Level Security Separation (L2S2) as a redundant
software solution that separates all security-relevant activities (with du-
plicated security features) from regular activities via quickly installable
software security solutions.

2. Providing hardware that supports basic L2S2 software solutions is be-
ing made available as a retrofit and as an additional security component
for most devices, including many legacy devices.

3. Establishing technology that provides L2S2 support and security by
default for all new products.

In short, Phase 1 can use low-level system programming and Hypervisors
(super-supervisors) inserted below every operating system so that L2S2 redo
and, if necessary, overwrite all security operations done by the OS. The addi-
tionally used hashcoding solution will guarantee that only known (safe) execut-
ables/apps are loaded and accepted in RAM; blacklisted and unknown codes
are immediately rejected. This feature alone will make a huge difference. Addi-
tional watchdog features within an enhanced L2S2+ can follow later.

Phase 2 will develop small, independent hardware components, enabling
L2S2/L2S2+ within the databus to all storage devices and networking compo-
nents. In this phase, we should try to have also USB security hardware, like a

ewi
Typewriter
2028 - Hacker-AI and Cyberwar 2.0+

(Securing our Future: Proactive Resilience through Separated Security Measures)

ewi
Typewriter
ISBN: 9798375252568

Copyright © 2023 Erland Wittkotter, Ph.D. All rights reserved.

2028 – Hacker-AI, Cyberwar 2.0+

174

security stick, that could check the integrity of the device independently. With
this security stick, we could ensure that Phase 1 software is in solid control of
the devices, which is later important for smartphones. The developed (watch-
dog-type) hardware will operate like uncircumventable or non-bypassable
bridges between storage/networking components, the main CPU, and its RAM.
This hardware will be the circuit breaker we need to control our hardware.

Phase 3 will include Phase 2 watchdog hardware within storage devices and
the networking components by default.

The primary goal should be to have Phase 2 retrofit or Phase 3 security by-
default technology in as many devices and as fast as possible because only these
technologies could help us to be protected against advanced malware from
Hacker-AI.

But there are two major obstacles to this goal: (a) it takes too much time to
have this hardware developed, tested, manufactured, distributed, and deployed,
and (b) hardware retrofits are only possible in servers, desktops, or laptops and
not in portable smartphones and many other (smart) devices.

Therefore, Phase 1 goal must be to provide a simple software solution that
can be implemented in all multi-tasking systems as soon as possible. This solu-
tion would be integrated by the OS providers and distributed as a security fix
for all currently updatable/supported OS versions. This also includes all serv-
ers, desktops, laptops, and smartphones.

This simple security solution has five tasks/features: (1) local data inventory,
(2) protected apps loading, (3) 3rd party software installation/updates, (4) safe
solution updates for L2S2, and (5) L2S2 integrity validation.

Now, here are some more details on that list:

(1) Creating a Local Data Inventory:
The new security software creates and caches immediately all hashcodes of

all locally available and installed executables. It checks these hashcodes remotely
via a new hashcode validation service if any of these hashcodes are blacklisted.
Otherwise, they are being managed in a protected local cache as graylisted.
Once all executables are hashcoded and checked, the solution would not allow
blacklisted apps or software with an unknown hashcode to be loaded into RAM.

Although the solution generates tens of thousands of hashcodes for poten-
tially hundreds of millions of machines, uploading these data to the servers hap-
pens entirely in the background (over days). Users are not bothered; these tasks
are done with several optimizations to reduce the amount of data that is being
uploaded and validated. This service is multi-tiered for quick up- and down-
scaling. Additionally, zero-listing is supported (i.e., waiting for better statistics);
this status type prevents any delay in using the new security system. It won’t
have any long-term impact on the system’s overall security.

2028 – Hacker-AI, Cyberwar 2.0+

175

(2) Protected Loading:
Once the hashcode inventory is locally created/established, only zero- or

gray-listed (and whitelisted) software is loaded into RAM. Blacklisted software
is rejected. Any new unknown hashcodes must be validated via a remote hash-
code validation server to determine if the software is accepted as gray- or white-
listed or if it is on a blacklist. Unknown hashcodes are managed on a yellow-list
(implying some associated risk). This yellow-list has replaced the initial zero-list
when the entire system started, and insufficient data were unavailable. Valida-
tion server’s decisions of rejecting or accepting hashcodes are based on white-
listing or statistics and rules heuristically. As a precaution, hashcodes from the
yellow-list are rejected by default.

The status of the hashcodes is not static. Grey-listed hashcodes could be
white or blacklisted. Even unfair or accidental blacklisting could be reversed.
Later, additional data from feature disclosures within the registration for white-
listing are managed locally and updated regularly.

(3) Support for Safe Updates/Installation of 3rd Party Software:
Outdated (regular) software is a serious security risk. Hackers don’t care if

the software is not being used anymore. Currently, we often need to wait until
users download and install rarely-used software updates. It is much better if the
software is not manually updated by users but kept updated automatically. L2S2
will set strong incentives to have software manufacturers use L2S2 update ser-
vices or inform users about problems with their outdated apps that L2S2 auto-
update does not support.

Device’s L2S2 instance will regularly request servers for additional data and
updates it has on installed software. Information about the security of systems
could be highly dynamic. Even whitelisted software must be updated if security
flaws demand it or are being flagged and blacklisted.

(4) Safe Updates for L2S2 Implementations:
Even after extensive testing, all software solutions are never perfect or com-

pletely safe. Therefore, L2S2 must be updatable without exposing itself to being
hijacked by advanced attackers. Currently, encryption and digital signatures
based on public-private cryptography are used to facilitate security around the
integrity of updated solutions. Unfortunately, that is the best we can do without
having dedicated hardware with protected, hardware-based crypto-units and
keys-safes.

As soon we can use hardware-based encryption/decryption using keys that
never appear outside protected hardware in cleartext, we have much better se-
curity around L2S2. Currently, it is difficult to say how weak, i.e., vulnerable to
attacks, a software-only L2S2 solution could be. The only way to find out is to
have external tools to check if the L2S2 implementation is modified.

2028 – Hacker-AI, Cyberwar 2.0+

176

(5) Independent L2S2 Integrity Checks:
Software-based L2S2 solutions are much more vulnerable than solutions us-

ing separate hardware in which only standard algorithms and encrypted keys are
being processed. For software-only security solutions, we need interfaces that
reliably validate the integrity of the L2S2 solution without making too many
assumptions about the device.

Additional Remarks:
L2S2 solution supports but does not require software registration and white-

listing of hashcodes.
Additionally, L2S2 hardware will need independent, protected hardware-

based encryption and key safes. However, the first version of this technology
may not have all the features of auto-detecting misused keys, multiple equiva-
lent secret keys, or multi-unit security.

Creating a sound global ecosystem with support systems for trustworthy
encryption that protects keys reliably in all conceivable aspects will take some
time.

Creating a protected crypto-system 2.0 using experiences from an initial 1.0
version would be prudent. After some time, we should use all available experi-
ences from problems and deal with more advanced challenges from potentially
autonomous artificial intelligence or artificial superintelligence. L2S2 and hard-
ware-based trustworthy encryption must be extendable from the beginning.

Expert Development Community
Cybersecurity is big business. It is generating a lot of recurring revenue and

has created many jobs. Cybersecurity claims to provide solutions for all com-
puter-related security problems, but its performance is disappointing, inade-
quate, even poor. Cybersecurity is failing, but their paradigms and ways of ap-
proaching security threats are still dominant. Let me give you three examples.
Cybersecurity depends solely on the main CPU/OS, although we already know
these foundational elements are the main reasons for our vulnerability. Cyber-
security doesn’t trust developers because they are seen as the source of vulner-
abilities. And third, it uses commercial encryption without sufficiently acknowl-
edging that keys can be stolen and misused by malware.

Our economic system is agile and innovative enough to develop sound tech-
nologies. But it is also entrenched and slow when existing business interests
must adapt to new realities. It seems (at least on the surface) that solving many
cybersecurity problems is not in the business sector’s interest - solving problems
will take away future business opportunities and endanger recurring revenue
models.

I believe that security and safety are human rights for which individuals or
organizations should not pay extra. I am not paying more for flying in a safe
airplane.

2028 – Hacker-AI, Cyberwar 2.0+

177

Some may say security guards are being paid to provide additional security
because police can’t be everywhere. Also, there are different methods of storing
money, and depending on the investments in security, the money is safer than
if less is being spent. That is all true; however, it is not the right comparison to
justify business models in data security.

The possible danger from Hacker-AI and later from autonomous artificial
intelligence or a hypothetical artificial superintelligence does not give us a
choice. Computer and data security are much more important than economical
or political interests. We will (soon) enter a world in which every vulnerability
will be found and exploited. Security doesn’t exist if it can be bypassed easily.
It’s not enough if we react to security breaches. What we need is what was called
in a previous chapter, low-level “security overkill” that can’t be bypassed or
claimed without (actually) having it.

Currently, consumers are accepting the trade-off between security and
money. If you want more data or computer security, more privacy, and less
worry about spyware or ransomware, you need to buy more expensive security
products or have paid subscription services. However, I acknowledge that many
data security features are already included in products and provided for free.
User identification and authentication are free, also controlling file access via
file ownership and access control lists (ACLs) are free to use. Even basic anti-
virus and firewall solutions are free. However, the general perception is that if
you want more security, buy a commercial security product.

It is reasonable to assume that the solution for a technical problem comes
from experts in the field. I assume that system programming, knowledge of
details of the operating systems like Linux, or people deeply involved with hy-
pervisor technologies are more than any other group of software developers
qualified to lead the afford in developing countermeasures for Hacker-AI.

The entire software development effort should be done as open source. This
should also include development done for hardware components. The ad-
vantage of open source is that other experts could check and contribute im-
provements or test tools.

In the development of technology, other technical tools are used. It is im-
portant not only to focus on new tools but also on simplifying or hardening
support tools. We must be sure that the tools we use are not compromised. It
is assumed that an open-source community will get significant support in its
effort to create a development environment that is potentially less efficient and
capable but much safer than right now.

Another important contribution of the expert community is the education
on applying the developed tools, new cybersecurity paradigms, or concepts in
new or existing products. It will e impossible to have an open-source commu-
nity do the entire work of applying the concepts to all the different possible
applications. Instead, it is much better to focus on the core features and prepare
them to be standardized.

2028 – Hacker-AI, Cyberwar 2.0+

178

The author intends to start an open-source expert/developer community
under the name: NoGo-* (pronounced: nogostar). More info can be found at:
www.nogostar.com.

However, the development, production, distribution, and deployment of
counterdefenses will take time. Unfortunately, we should assume that activities
leading to countermeasures could be sabotaged or even made impossible. In
the worst case, unprotected developers or manufacturers could be harassed or
actively attacked by malware or other cyberweapons generated by Hacker-AI.

Threat-Levels
The status of Hacker-AI and the abilities of adversaries trying to stop the

development of countermeasures is unknown. The effort will likely fail if ad-
versaries actively fight against the development, production, distribution, and
deployment of countermeasures. In that case, we would be too late.

Predicting future events or capabilities is impossible. Still, we can proactively
categorize Hacker-AI-related scenarios into threat levels (TL). Depending on
the threat level, we must prepare different protective measures.

Threat-Level 0 (TL-0):
In TL-0, we assume that there is no advanced threat from an already existing

Hacker-AI that could sabotage the development, production, distribution, or
deployment. We would use existing tools and create the technology as if
Hacker-AI and adversaries opposing this development would not exist.

Threat-Level 1 (TL-1):
TL-1 assumes that there is a slight chance of an advanced Hacker-AI. It

might already be developed or possibly deployed to sabotage the development
up to the deployment of countermeasures. Even if most experts agree that we
are still in TL-0, it is probably a matter of professional prudence to assume that
adversarial Hacker-AI will interfere with developing reliable countermeasures.

Threat-Level 2 (TL-2):
TL2 is announced or declared internally (not publicly), i.e., among anyone

involved with the development, production, distribution, or deployment of
Hacker-AI countermeasures. As soon as there is sufficient evidence that an ad-
vanced malware has modified the OS to remain hidden, TL-2 is declared. Mod-
ifying OS to remain hidden is what Cyber Ghosts would do. Without hardware-
based low-level separate security (L2S2), it is very difficult to determine the
scope of this attack.

With TL-2, I propose that all steps to final deployment must be done re-
peatedly on (multiple) different, isolated, non-networkable systems with older
software versions from immutable storage media (e.g., old write-once CDs).
Checking the same results repeatedly and redundantly will cost additional time
but must be done to avoid undetected infections from advanced malware.

http://www.nogostar.com

2028 – Hacker-AI, Cyberwar 2.0+

179

More simplified hardware systems must be developed to ensure harddrives
in isolated systems are completely overwritten and uncompromised. Other sim-
plified tools must be developed and used to ensure that the BIOS/UEFI or
other microcontrollers with persistent memory is not compromised. Addition-
ally, it would be better if the used hardware components were older.

The entire data transfer should be done with immutable data-storage media
(e.g., CD-RWs read by older CD-R drives only). These transfer media are then
archived so we can later check if or when additional (attack) data have entered
the development zone or started to become active within the development
tools.

Unfortunately, we cannot prevent early Hacker-AI interference, but we
should be enabled to detect and remove them later. In TL-2, every step toward
deploying countermeasures must be distrusted and analyzed many years later
with more advanced and secure tools.

Hacker-AI has self-improving capabilities supporting and supported by
smart operators focused on defending their position of global supremacy at
(almost) all costs. In TL-2, we are certain that Hacker-AI exists; this would ele-
vate the urgency for establishing effective countermeasures (globally) to new
heights.

Threat-Level 2-X (TL-2-X) or Emergency Level:
If key contributors, producers, or facilitators are attacked directly by mal-

ware/Hacker-AI, then TL-2 should internally be elevated to an emergency level
(TL-2X). Elevated protection measures from the next level (TL-3), which
would be publicly announced, are used to protect people and deliverables with
more (non-electronic) resources.

Threat-Level 3 (TL-3):
TL-3 is when Hacker-AI was (presumingly) already used within a Cyberwar

2.0 to occupy another country, or a government was replaced via a malware-
using cyberwar. Public discussions about possible advanced capabilities or vul-
nerabilities would likely create panic among leaders, media, and helpless citi-
zens. Cyberwar 2.0 events are assumed to create global shockwaves. They
would indicate that no computer and no defense system is good enough pro-
tected to prevent Hacker-AI from being used against the civilian population,
business, government, military, or additional countries.

Although fear and uncertainty could potentially lead to nuclear war, it is as-
sumed that engineers and scientists from non-occupied countries worldwide
would work tirelessly to limit Hacker-AI’s scope of capabilities.

The public announcement of TL-3 would trigger a significant change in the
civil defense posture. Because every network-connected device could turn hos-
tile, this could get very personal quickly, like fear of being automatically sur-
veilled and taken advantage of. In the first (non-technical) step, citizens would
need to be trained to be extra vigilant about their surroundings and deactivate

2028 – Hacker-AI, Cyberwar 2.0+

180

as many electronic devices as possible. We would probably be advised to de-
pend more on older, less capable devices (mobile or burner phones instead of
smartphones) until hardware-based countermeasures are in place.

Threat-Level 4 (TL-4) - Defeat:
TL-4 is when Hacker-AI has effectively defeated all proponents or forces

providing countermeasures against Hacker-AI. Surveillance and collaborators
instructed to destroy all possible countermeasures within the development, pro-
duction, distribution, deployment, and usage would prevent any chance to cir-
cumvent comprehensive surveillance.

I am not discussing criteria for “too-late” or a global TL-4 (defeat) situation.
However, there is probably a tipping point where “too late” or defeat is an
appropriate description.

In TL-1, we only deal with an imaginary adversary malware-generating
Hacker-AI or, at most, a passive Cyber Ghost. Developers would entertain sce-
narios from which we don’t know how realistic they are. Therefore, our as-
sumptions may overestimate Hacker-AI’s current or future capabilities, but we
would act as if this Hacker-AI waits for a chance to interfere against us adver-
sarially. Starting with TL-2, we are dealing with a real cyber-threat that we
should not underestimate - so we might overestimate its capabilities.

If the USA or some other country (with a liberal system) has or uses Hacker-
AI for defensive, retaliating purposes, then we should better hope that they are
also using their capabilities on the side of supporting the development of com-
prehensive countermeasures. Governments’ capabilities might be provided for
digital protection around all systems involved in developing, producing, distrib-
uting, and deploying countermeasures as part of their TL-2 or TL-3 support.

About Security Measures
In TL-1, all relevant contributors are advised to get educated on improving

their cybersecurity in a meaningful but not overly aggressive way. Still, at mini-
mum, developers should do their core development within a virtual machine
disconnected from the Internet. Their web activities or communication could
be done in separate virtual machines. Users could restart these machines regu-
larly to remove potential spyware or malware from the Internet. Additionally,
recommended standard tools with provided configurations are used to detect
anomalies immediately or via tools automatically checking the log files. Alt-
hough it is not expected that Hacker-AI generated-malware could be caught
with these tools, it should be done to leave no stone unturned if something
suspicious happens.

In levels TL-2 and above, we would need comprehensive security for all
people involved in the product development, manufacturing, distribution, and
deployment of the countermeasures. They should feel safe, i.e., free from harm

2028 – Hacker-AI, Cyberwar 2.0+

181

or threat of harm. Police and other security organizations must help create con-
ditions in which all involved people are safe and protected regardless of their
level or importance of contribution.

Personal protection for the directly involved and their immediate family
must be monitored and safeguarded from unfounded accusations. Dangerous
or intimidating acts like swatting, in which called police use SWAT teams to
raid the house of innocent people, must be analyzed comprehensively. It is con-
ceivable that some key contributors must be more vigilant and isolated so that
they are not physically attacked via drones, fire, poison, etc. In TL-2, it would
be best if key people’s physical location could be hidden from surveillance and
any data traces while they still have the means to communicate safely.

The mentioned security education should advise people working on the
countermeasures that even in TL-1, their casual and thoughtless use of net-
works or removable storage drives should be over. They must be made aware
of possible threats to their lives/safety or privacy from electronic equipment in
their surroundings.

Multiple different offline tools should be developed so that people receive
sufficient protection against threats, unjustified accusations, fabricated evi-
dence, falsification, or deep-fakes using simple/reliable evidence preservation
methods.

In more existential Level TL-2X or TL-3 situations, key contributors must
be trained in best practice methods of going dark for weeks or months; trained
but inconspicuous security teams might protect some. These measures seem
overkill, but we should not take chances if humanity’s future of living in free-
dom depends on it. We should prepare ahead for these situations while digital,
identifiable footprints are avoided in the run-up.

The US Air-force has created secret test sides, like Area-51; the US cyber-
command should work on similar sides to develop soft- and hardware with the
help of pre-identified or recruited experts in protected and well-equipped envi-
ronments.

All soft- and hardware used in countermeasures are being developed as open
source. Dedicated experts can scrutinize and improve existing results and de-
liverables continuously. This method is more efficient than backroom code re-
views or security audits for receiving certifications.

All code should be compiled independently by different developers and sys-
tems and checked/compared continuously for additional features slipped in by
Hacker-AI. However, if many experts watch over simplified features and code,
the probability that suspicious (hidden/malicious) features are being detected
increases significantly. With the detection that Hacker-AI features have pene-
trated the security for code or compilation, experts would hunt down the source
of these manipulations and remove them.

2028 – Hacker-AI, Cyberwar 2.0+

182

Protection of Development
The purpose of the proposed methods is to continue the development of

countermeasures when sabotaging these activities is a real possibility. I assume
that the most significant method of attack by Hacker-AI is code modification,
i.e., leaving backdoors or sleeper code in the to-be-developed/-deployed secu-
rity code. The goal is, therefore,

(A) to prepare for late sabotage detection,
(B) to repair damages or consequences after detection quickly, and
(C) trying to reduce Hacker-AI’s possible impact via clean-room-type soft-

/hardware environments for developers.
The scope of the development effort is broad. It contains all activities that

could be changed before fixed code or products are produced, distributed, or
deployed via fixed, scalable, and immutable processes. Protecting these pro-
cesses against covert changes is part of the development.

(A) Preparation for Late Sabotage Detection
We better assume that sabotage cannot be detected when it happens. Mal-

ware from Hacker-AI could be on a machine when developers code or test their
solutions. The problem is not the loss of privacy or secrecy when developers
write their code; the code is already open source. The problem is that compiled
code gets some additional (hidden) features just before, during, or after compi-
lation.

Due to the system’s complexity, developers are almost helpless in detecting
possible backdoor code inserted by Hacker-AI via tools during the develop-
ment.

When we also assume that Hacker-AI creates several layers of protection
around its compromising features, it gets difficult to confirm the integrity of
compiled code. Actually, validating compiled software is nearly impossible if
someone or something smart prevents us from detecting a backdoor or sleeper
code. This situation is realistic if Hacker-AI is already ubiquitous.

I usually assume that top-developers know their source code very well and
would detect suspicious code changes. Inadvertently, Hacker-AI would reveal
its existence if new code or features appeared within files that should not be
contained within that code. Collaboration among several experts is done trans-
parently; other developers would see every change. New/changed code is al-
ways assigned to someone responsible for it. However, this does not apply to
(late-stage) feature insertions within compiled software.

Recently, supply chain security in open source was improved by several ser-
vices, incl. GitHub. Unfortunately, the security is based on Public/Private Key
(PPK) systems. Using PPK against Hacker-AI, from which we must assume it

2028 – Hacker-AI, Cyberwar 2.0+

183

can steal crypto-keys covertly, is not enough - we must demand that no crypto-
key is exported or seen in cleartext or processed in a regular/shared CPU.

If we cannot check compiled code for hidden code modifications immedi-
ately and comprehensively, we can still create physically immutable data, e.g.,
on a CD, to be checked later by new hardware tools. These hardware tools don’t
need to exist when these immutable files are being created. Later, these files can
serve as irrefutable evidence for detecting Hacker-AI activities; or we could
confirm that there was no Hacker-AI interference. It will be challenging to de-
velop tools we can trust and give us independent validation or confirmation.

These validation or confirmation tools must consist of simplified hardware
with only required software features, i.e., code that is always/regularly being
used. These tools should have no multi-tasking or -threading capabilities. Ad-
ditionally, their RAM should be strictly segmented into a range with executable
data only and another with data to be processed. This approach is also known
from the Harvard CPU architecture. The executable code in these tools is sim-
ple, well structured (i.e., on a machine language level), and transparent to the
outside so that qualified experts can do in-depth inspections anytime. Further-
more, users must be sure that no covert code changes happen in-between in-
spections, which is guaranteed if there is an air gap (physical separation from
the network) between the device and how it receives data.

For validation, these tools could, e.g., prove the congruence of features (as
defined in the source code) with features provided or defined in the compiled
code. These follow-up validation and confirmation steps are potentially annoy-
ing or labor-intensive, but security must be more important than efficiency in
using these tools.

(B) Instant Repair of Damages
With the detection of covert modifications in security code, we use addi-

tionally (persistently) stored information to detect problems with the compro-
mised tool or tools used in that attack. Once the tool is identified and fixed, we
need to be able to fix the security code, i.e., recompile and distribute it to all
compromised instances automatically. Also, we need to be sure that automation
or distributed updates are not creating new security breaches.

This process of detecting problems, fixing, and redeploying solutions is es-
sential for mitigating damages from attacks immediately. We need methods to
flag devices that are not fixed as potentially unreliable. Security code is stored
immutable (for attackers) but mutable by defender features in a physically sep-
arate security domain with multiple independent/redundant checks. We must
put extra effort into developing or deploying tool features for detecting or re-
vealing attacker code/features that the attackers could not know when they de-
signed their attacks. Attackers must be prevented from reading and modifying
low-level security code, i.e., they cannot adapt to new detection methods. With

2028 – Hacker-AI, Cyberwar 2.0+

184

these late, advanced changes, Hacker-AI’s security around the protection of its
attack method would eventually fail.

(C) Hacker-AI Impact Reduction via “Digital-Clean-
Rooms.”

All security or countermeasure tools, their code, and all information related
to these tools are open-source. We do not need secrecy around any component.
All algorithms are isolated from the main OS and each other. The source code
is simplified concerning internal complexity and features; it is not (prematurely)
optimized for marginal performance gains. Every change is scrutinized for ma-
licious intent or unnecessary features.

Still, source code is being written with tools, compiled, and distributed with
other tools. Each tool the code came in touch with, including software present
in RAM simultaneously, is logged via name, metadata, and its binary hashcode
value. However, security-critical incidents could happen when, e.g., new secu-
rity software and the generated hashcode, uniquely representing the security
software, are generated simultaneously or in coordination by an attacker. Ini-
tially, we must accept that attackers could fool us. Methods of archiving/storing
data about new security software, i.e., compiled security software and its hash-
codes, are vulnerable to attacks despite all measures we could use to protect us.

Changes to the development, compilation, or distribution environment
must be made more difficult using specially compiled Linux kernels that auto-
matically track hashcodes of all loaded executable files. Continuous tracking of
hashcodes and logging every change by storing it reliably on physically immu-
table storage media will preserve attack traces. These data are later analyzed via
tools on simplified devices, e.g., a RISC V (an open-source CPU design) and
simplified software for that system. Over time, we get increasingly cleaner dig-
ital clean rooms.

Additionally, some developers may intentionally use simplified devices for
their regular work. They would separate their coding and code compilation on
different devices. Transferring data between these systems could take additional
time and go against the developer’s propensity for efficiency, but security and
code integrity have priority. These systems would have no hardware for wireless
network support. Cable-based Ethernet should be physically disabled - the same
applies to internal mics or cameras. Also, every unused USB connector is disa-
bled as well.

Like hardware manufacturers, software developers (working on security)
should also move their source code into digital- clean-rooms where suspicious,
compromised code is easier detectable.

The expectation is that partial security/countermeasure solutions would
throttle down the impact of Hacker-AI. Suppose this approach works; it could
increase our confidence in the integrity and reliability of less compromised so-
lutions on next-generation devices step-by-step. However, it is unknown if this

2028 – Hacker-AI, Cyberwar 2.0+

185

partial reduction of undetected impact by Hacker-AI is feasible, but it seems it
is the best we can do for now.

I assume that increasing security is done by simplifying devices with no un-
necessary interface. Less complex processors, smaller RAM utilization by a non-
multitasking OS, and fewer features are helping us toward this goal. We may
also take a closer look at some performance optimizations and remove them
for simplicity within independent reviews.

Is This Enough?
Starting the development with a TL-1 assumption is prudent. It won’t have

significant implications for people outside the development of countermeas-
ures. It will give professionals a new perspective on vulnerabilities within their
development, production, distribution, and deployment processes. The pro-
posed protection measures, (A) Late Sabotage Detection, (B) Instant Damage
Repair, and (C) Digital-Clean-Rooms, are then part of the development within
TL-1. These measures are, by default, used at higher threat levels. However,
beyond TL-1, we will have a more severe focus on device isolation and deacti-
vation or control of unnecessary device interfaces.

The development is probably slowed down due to TL-1 security measures.
But still, others develop in parallel with low or no security (i.e., TL-0); we would
likely have deployable results quickly - TL-1 is just a backup, a precautionary
measure. Other teams of developers are working on hardening the entire devel-
opment/deployment process with soft- and hardware tools. The developed
countermeasure solutions are independently validated as soon as more secure
developer environments are available.

Detecting malware within the development process or later within the de-
ployment is not a reason to assume we already have a TL-2 situation. It should
require evidence or a credible whistleblower to call out this level. We need to
detect malware with ghost-like features, which seems unlikely.

Currently, zero-day vulnerabilities (0-Days) are very expensive as they are
found by hackers manually. Using 0-Days or having (expert-level) defenders
know about them makes 0-Days quickly useless or worthless. Suppose we
would see many more attacks with different 0-Days or reverse code engineering
in combination with code-modifying attacks on the development of any coun-
termeasure component. In that case, we should start worrying about TL-2.
However, only experts seeing the numbers and their evidence in detail should
be allowed to call for an internal elevation to TL-2.

I assume that we could find less-sophisticated technical measures within TL-
1 and TL-2 that are sufficient to protect the first countermeasure deliverables;
however, this might be a longer, iterative, and potentially competitive process
in which we need to compare over a longer period the recorded results. Addi-

2028 – Hacker-AI, Cyberwar 2.0+

186

tionally, because of the heightened security warnings, developers will take secu-
rity measures and processes more seriously, i.e., they will do many more
code/system checks than they would otherwise.

Over time, protective solutions within developers’ environments will detect
attacks (eventually). They will not contribute to additional vulnerabilities in so-
lutions if we prepare to fix the underlying issues immediately and safely. Differ-
ent experts’ intense scrutiny at every step will likely remove most problems at
some point; this may not necessarily happen within version 1 of the counter-
measures. I hypothesize that version 1 has enough redundancy to facilitate pro-
tection against covert change and limit damages. With operational experiences,
we can make version 2 much safer.

However, operators behind the adversarial Hacker-AI could start directly
threatening or harming key people within the development. Offline tools pro-
tecting developers should then be capable of gathering this evidence reliably.
With evidence, we would then announce TL-2X internally; all people involved
must be informed that malicious and personal attacks have happened and that
a determined adversary is trying to prevent the development and completion of
countermeasures. How people are protected is beyond this book’s scope, but
professional advice and support are likely warranted. Operational plans to pro-
tect people and product development at TL-3 (i.e., confirmed Cyberwar 2.0)
should be developed as soon as possible, even if this is not being published.

When developers are forced to protect themselves, their families, and the
physical integrity of used equipment or buildings, we must expect that the de-
velopment, production, and deployment could be slowed down significantly. If
this sounds like an overstatement, we should remind ourselves that anything
bad could be expected in TL-2X or TL-3/4 - because these threat levels indicate
war or preparation for war.

Additionally, we are dealing with many unknowns, and many iterations are
required for defenders to get tools that handle Hacker-AI during development.
The sooner we develop hardware-based security for our IT devices, the easier
we can produce, distribute and deploy improved security.

Security is an arms race. We may solve some problems if we are too late.
But if we are (really) too late, we may never catch up. We may fight against
advanced malware of an adversary determined to take advantage of our vulner-
abilities. In that situation, it is obvious: nothing will change the fact that we were
too late.

Protection of Manufacturing, Distribution,
and Deployment

Software deployment via automated updates is not a distribution problem
because delivery happens via the ubiquitous Internet. However, software-based

2028 – Hacker-AI, Cyberwar 2.0+

187

updates might come too late and would not eliminate irremovable mal-
ware/Hacker-AI from the system. In TL-2 or TL-3, this problem must be ac-
cepted because we were too late. However, these software-based countermeas-
ures must still be distributed because they set the foundation for independent
hardware security solutions that use the same hashcodes for their white-/gray-
and blacklisting.

Hardware-based security solutions will not require high-end technology or
manufacturing equipment. If we are beyond TL-1, it is assumed that they could
be produced quickly within a war-effort-level utilization of different manufac-
turing facilities.

The biggest problem is to prevent or suppress malware-based sabotage. Un-
fortunately, time-consuming interruptions from malware won’t happen before
the equipment or systems are used in production. If critical computerized sys-
tems are isolated, potentially even from each other, we could test them and have
malware activate itself prematurely.

Trained professionals prepare organizations with advice on workplace secu-
rity and safety measures. Similarly, cybersecurity professionals should reveal
threats from Hacker-AI and Cyberwar 2.0 in every organization involved with
the countermeasures. Initially, we could have a lot of ineffective improvising
due to a lack of guidance and misunderstanding of how Hacker-AI is spreading
its malware. But the full mobilization of people trying to fix problems from
different sides could show some (surprise) breakthroughs over time.

An (open-source) expert/development community, as suggested by NoGo-
* (nogostar.com), could educate people dealing with software and network de-
pendency that contributes to vulnerabilities critical within the development,
production, distribution, and deployment of countermeasures. A dynamic ex-
change between people at the forefront and experts knowing about possible
system vulnerabilities could provide improved solutions that isolate or fix pro-
cesses within production, distribution, and deployment of the security hardware
from targeted attacks.

In TL-1, many professionals will not take the threat of Hacker-AI interfer-
ence seriously enough. Even if there are signs of Hacker-AI interference, most
people within the production, distribution, and deployment chain would likely
wait for TL-2X or TL-3 events until they actively participate in advanced secu-
rity measures. Then they might be ready to accept the inconvenience and pain
of isolating equipment from the network. Unfortunately, that might be too late
because their software might be compromised with difficult-to-detect malware
that interferes with reliable tools/hardware delivery.

The struggle to deliver sufficiently good countermeasure tools could go on
over many years, in which countries, businesses, and peoples are potentially at
risk of being attacked or damaged by Cyberwar 2.0 or Cybercrime 2.0 tools or
events.

2028 – Hacker-AI, Cyberwar 2.0+

188

The reason for many problems with the development, production, distribu-
tion, and deployment of countermeasures (and likely events with Cybercrime
2.0) was that measures to protect systems/devices started too late.

