
161

12. Countermeasures:
Understanding Why they Work

Proposed Solutions Applied to Problems
Within the second chapter, I mentioned some deep-rooted problems with

our software-based technology that resulted in a list of challenges we must face,
or we have no cybersecurity. Let me repeat this list briefly as a reminder before
I will discuss them in the follow-up in the context of our proposed solution.

(1) “Software is invisible”: Software can only be seen and validated indi-
rectly; it requires trust in the entire ecosystem to trust any part. Rephrased:
“Software must be trusted (blindly)”, and someone else “will (hopefully) see the
problem”.

(2) “Software is covertly modifiable” Emphasis is on “covert”; detection
of modification is not reliable. We have too many blindspots with mutable soft-
ware where covert/temporary modifications can happen.

(3) “Every tool/component could be compromised”. We must question
our trust in whatever we use. Rephrased: “Any software can be dangerous.

(4) “Attacker chooses methods and timing”. Attackers have the first-
mover advantage. Defenders must be prepared anytime for anything that an
attacker can do.

(5) “Attackers know more (about vulnerabilities)”. Attackers know
more about the weak spot they use, while defenders need to know (and fix) all.
Defenders are often surprised by the used attack (details).

(6) “Attackers can adapt to (known) methods of detection”. Attackers
don’t want to be detected. They could change their appearance, remove reveal-
ing data, or modify attack detection tools to remain undetected.

(7) “Attacker can get away unidentified”. Attackers can remove their
traces and misdirect forensics. Without identifying attackers, we cannot hold
them accountable or deter them.

(8) “Secrets are unreliable in defense”. Defenders should not build their
defenses on secrets they assume attackers don’t have. In particular, secrets
known by humans could also be known by attackers.

ewi
Typewriter
2028 - Hacker-AI and Cyberwar 2.0+
(Securing our Future: Proactive Resilience through Separated Security Measures)

ewi
Typewriter
ISBN: 9798375252568
Copyright © 2023 Erland Wittkotter, Ph.D. All rights reserved.

2028 – Hacker-AI, Cyberwar 2.0+

162

(9) “Defenders can be compromised”. Humans involved with the essen-
tial decision or process competencies can be blackmailed or deceived; they
could be turned into traitors with enough pressure.

(10) “Software output could be faked (late)”. We communicate with soft-
ware via its output, but we should be careful in trusting what we hear or see
within the output.

(11) “Complexity is an enemy of security”. Security is part of a complex
system; we should not trust it.

(12) “Crypto-Keys/Units are unprotected” Protecting (locally stored)
crypto keys from being stolen or preventing misuse of crypto-devices is con-
sidered a problem, but not considered a critical core problem within cryptog-
raphy yet.

The above list of problems can be divided into four categories: software,
attacker, defender, and crypto. The first three problems are software-related,
and the next four are attacker-related. Then we have four defender-related
problems (8 - 11). The last problem is infrastructure, but mainly crypto-related.
These categories or the above list do not claim to be comprehensive but a start.

If we dare to tackle the above cybersecurity problems, we must do this com-
prehensively with as many tools and with as many problems solved. Although
redundancy could help us to avoid damage from failures in one measure, the
weakest component within security could potentially waste all our progress.

Next, I want to show that the proposed security solutions make security as
simple as possible but not simpler. Additionally, I will show how the danger
from Hacker-AI-generated malware, Cyber Ghosts, and Cyber Devils could be
solved technically. To prevent malware from Hacker-AI, we must solve the
above issues and turn technology in favor of cyberdefenders.

Unfortunately, cybersecurity or cryptography does not contribute enough
solutions yet, and quite bluntly, many or most (?) security professionals seem to
have given up on providing help for these issues. Repeatedly, hacks are sneaking
through the cracks, and frankly, I cannot blame anyone dealing with security
for taking the proposed solutions with a grain of salt. However, I will show that
they make many/all of the above issues irrelevant or manageable.

The discussion below may not be enough, but it is a start. I expect to hear
or read compelling examples if the arguments are wrong. Being doubtful if it
works is ok, but this should not be an excuse to do anything. Hacker-AI and
Cyberwar 2.0 are real threats that we must deal with sooner than later.

In general, all proposed security tools are about uncovering covert security-
relevant activities and identifying the source of the attack. Stopping and identi-
fying them is accomplished using cached hashcodes for the app and key track-
ing. Known hashcodes are accepted when they are not blacklisted. Unknown
hashcodes are rejected by default and potentially investigated.

2028 – Hacker-AI, Cyberwar 2.0+

163

Our basic assumption behind the proposed security is that in-transparency
and covertness around (critical) operations have led us to our vulnerabilities.
Therefore, we should push for more transparency. Once attack patterns that
harm or damage users become detectable, they can likely be handled with busi-
ness or legal rules. Security rules can be adapted over time to include exceptions,
but users should confirm deviations from default security-related opera-
tions/rules (incl. settings) or be informed.

In the following, I discuss how the proposed solution components affect
the discussed problems. I restate the problems in light of the new approach to
cybersecurity.

Software-related Issues/Solutions
I don’t want to make the solution more complicated than they are. So I get

straight to the how and why it will work.

(1) “Software is invisible, but becomes identifiable”.
We can only allow white or graylisted software in RAM; this requires hash-

coding and the registration or statistical analysis of all software (including
scripts) to determine which software we know as legitimate. Once we know that
software comes from a (known) source, we could make the developer or man-
ufacturer accountable for their malware or for using an exploit.

With hashcodes, we can reliably gather additional information about exe-
cuted software; this also applies to graylisted apps. Over time, software becomes
more transparent and, thereby, more trustworthy, i.e., it is only doing what we
expect it to do; the software does not surprise the watchdogs with hidden (se-
curity-related) features that would raise flags.

With a hardware-based Executable Watchdog, we can be sure that even the
hypothetical Cyber Ghost or Cyber Devil can’t avoid hashcoding. Every code
must inevitably go through a bottleneck, the databus. The databus contains a
separate component that uses trustworthy code from the security domain to
analyze every executable. A Cyber Ghost cannot modify the security domain
with its regular code, and all hashcodes are reliable because we can trust encryp-
tion and digital signatures with the use of keys that can’t appear in cleartext
outside protected crypto-units.

We only need to create additional measures to eradicate malware from pos-
sible hideouts like BIOS, UEFI, or other NAND gates used as memory com-
ponents (like flash memory cells) within microcontrollers on the motherboard
or within the storage, network, audio, or videos cards. We know these possible
locations, and we will likely have, sooner than later, sufficiently good tools for
cleaning these locations.

With hashcoding, we could make software visible and identifiable whenever
it is required to know that it has not unexpectedly changed.

2028 – Hacker-AI, Cyberwar 2.0+

164

(2) “Software is (not) covertly modifiable”.
If the hashcodes derived from the executables are checked before every use,

i.e., before apps are loaded into RAM, covert modifications to these apps are
detected immediately with dedicated/separate hardware (i.e., with the Executa-
ble Watchdog). Multi-Unit-Security facilitates overt, legitimate, and non-ob-
structed modifications and updates, but it would create an instant alarm if the
watchdog is manipulated so that the watchdog would let in some manipulated
software into RAM.

In software-based security solutions, decisions on accepting hashcodes in
RAM are done via the main CPU/OS; there is the possibility that Hacker-
AI/malware could have found a way into RAM and let other modified software
in, or the malware could modify/compromise other apps in RAM.

If we have the hashcode generation and security decisions related to hash-
code status (white/gray/black or unknown) done in physically separated com-
ponents operated with OS-independent software (i.e., separate security hard-
ware within the non-bypassable databus), then this problem of undue influence
by code running on the CPU is solved.

It is possible to include the hardware as a retrofittable bridge component
within the databus, e.g., by changing the cable or via a bridge-connector on
either side of the original cable, and the PC or laptop would be safe. This retrofit
is not doable with existing smartphones.

(3) “Every tool/component could (still) be compromised, but
we can stop it and know who did it”.

Hacker-AI could still try to manipulate development tools and get back-
doors or sleeper code in published software. Developer tools or third party-
components can be compromised and infect other software. These problems
will be fixed as soon as they are discovered. Over time the number of occur-
rences of these types of attacks will shrink; old backdoors are discovered, and
new ones are increasingly more difficult to create.

Also, including malicious features or backdoors into products are intentional
decisions by software developers or manufacturers. Even later, if malware fea-
tures are discovered, the reputational damage could be catastrophic. Being pro-
actively transparent about their mistakes could be their only way out.

Every late modification to code is detectable via hashcodes. It should not
be easy to quietly cover up features with intentional and covert damage poten-
tial. With hashcodes associated with archived binaries, old software and their
chain of modifications could be analyzed anytime (later).

Also, software vulnerabilities are of no concern as they require detectable
exploits. If vulnerabilities are used, this is a serious violation of trust with repu-
tational consequences. The registration process may allow a confidential com-
ing-clean confession. In time, the software ecosystem will become significantly

2028 – Hacker-AI, Cyberwar 2.0+

165

less compromised and less vulnerable due to the steep consequence of devel-
oping or using exploits.

Attacker-related Issues/Solutions
I could go directly to the main reputational point of why nobody dares to

be an attacker: it would likely end someone’s career. But still, because of redun-
dancy and because I raised other attacker-related issues, I want to show how
they are being solved.

(4) “Attacker chooses methods and timing - but has no benefit
from that”.

Having a first-mover advantage is not enough anymore. Defenders can cre-
ate within their separate security domain honey-pots or tripwires that attackers
cannot know or systematically explore without the risk of being detected in
probing these security/detection methods.

If they explore weaknesses in an attacked system, this is done by white or
gray-listed software. If this exploration of features or vulnerabilities is detected
as suspicious, the software will be blacklisted immediately. However, these
measures are bypassed within developer’s environment, where temporary reg-
istration data are accepted as real whitelisted data, and no suspicion is raised.

Sooner than later, compromised gray or whitelisted software will raise a flag
when it does anything suspicious, like elevating the permission rights of soft-
ware components, opening unknown file types, changing the attributes of files,
etc. Everything that the software is not normally doing or what was not dis-
closed within registration is an anomaly. Anomalies trigger automated investi-
gations of suspicious software. The first time attack software uses its attack ca-
pabilities, it becomes exposed to automated scrutiny - that is not a first-mover
advantage.

(5) “Attackers know more (about vulnerabilities) - but they
won’t dare”.

Because hashcoding detects modified software and exposes the exploitation
of vulnerabilities, knowing more is insufficient to gain an advantage in an envi-
ronment that expects white- or gray-listed software. The attacker’s only ad-
vantage is having secret knowledge of the availability and features of backdoors
or sleeper code within unknown software. But using these features might make
them immediately known.

Also, to succeed, attackers must first risk their anonymity and reputation;
Rebuilding a reputation is time-consuming.

(6) “Attackers can adapt to (known) methods of detection - but
can’t bypass it”.

Attacker changing their appearance creates a new unknown hashcode which
is rejected by default. Which data the separated security layer uses to detect

2028 – Hacker-AI, Cyberwar 2.0+

166

malware or anomalous white- or gray-listed software uses is unknown to attack-
ers.

Bypassing detection is futile; the same applies to removing undetected data
traces. Attackers can only use regular processes without access to the security
domain in which data traces are generated. What is collected cannot be accessed
or modified by software within the regular domain executed on the CPU.

Cyber ghosts could theoretically bypass software-only protection via up-
dated software. But it is doubtful they could bypass separate security hardware
components watching each other for suspicious misuse or modifications.

(7) “Attacker can (not) get away unidentified”.
Attackers are identified when they register their software. Remaining anon-

ymous is making them potentially suspicious. If users accept new grey-listed
software, it is up to them to accept that risk. Attacker’s presence and involve-
ment will be discovered because there will be an unacceptable or suspicious
event leading to damage or harm to the device owner or user.

Defender-related Issues/Solutions
I want to show that the defender position has significantly changed once the

proposed solutions are used in cybersecurity. Defenders will have an edge, but
this edge should not be gambled away with overconfidence. Defenders are vul-
nerable as regular people; they could be blackmailed or bribed and turned into
traitors. If a small group of humans remains important deciders within the de-
fense, they could also become unwilling targets.

(8) “Some Secrets are unreliable in defense - others can be
made reliable”.

Secret data, including encryption keys and operational status settings (i.e., is
a security measure active or dormant), are made so secret that no human can
know them, even when they are trying hard. The secret of which data were
generated or used within defense for detecting anomalies is only shared after it
was used, i.e., when it becomes essential evidence.

Operational secrets that no human or process within the regular domain
knows is the only reliable secret.

Intentional uncertainty can deter attackers from probing security covertly or
systematically because it could be suspicious, indicating preparation for an at-
tack.

(9) “Defenders can (not) be compromised”.
Security is proposed to be automated and non-modifiable via decisions.
Additionally, it will be humans who decide how much risk they accept. If

there is a risk of blackmail or bribing, this person has too much responsibility.
It is much more difficult to attack 4, 5, or more if anyone could sabotage a
decision covertly.

2028 – Hacker-AI, Cyberwar 2.0+

167

(10) “Software output could still be faked (late), but we gener-
ate irrefutable evidence”.

Some transactions are known to be harmful, and others are critical for at-
tacker preparation. With independent log data within the security domain
around regular transactions, the details of these logs are unknown to attackers
and human operators. However, commercial transactions are made detectable
to the security domain so that these data can be stored or logged as irrefutable
evidence in case of any discrepancies in these transactions.

The software in the security domain would log enough data to discover fake
output from the past (via replay) or the present via detecting modified software
within the software stack. The Executive Watchdog will trigger an in-depth in-
vestigation by providing an automated (full) report to a system dedicated to
these reports and follow-up investigations.

(11) “Complexity is an enemy of security - we use/deploy sim-
plified, dedicated systems for security”.

Our current technical ecosystem is extremely complex. Many different old
and new hard and software components are continuously updated, giving these
systems more functionality. With thousands of technical standards, systems are
integrated. Our IT systems use multiple technologies in parallel or are built on
top of each other. The technology uses hundreds of programming languages.
We are probably in the thousands when we are also considering major versions.

However, by separating a standardized, independent security domain from
regular code executed within the main OS and CPU, i.e., the regular domain,
we have a simplified security environment in which only security-related tasks
are executed. Attacker’s regular code has no access. Additionally, the separate
security domain can be updated with tightly controlled updates. At the same
time, Multi-Unit-Security guarantees that only trusted, standardized, i.e., al-
lowed code is being executed in the security domain. Every deviation from the
standard is easily detectable as an anomaly. This simplification is much easier to
defend than a complex commingled code environment with security and regular
code.

Crypto-related Issues/Solutions
I return to the three problems of commercial cryptography: 1. Keys can be

stolen covertly/undetectable, 2. Crypto units/engines can be manipulated, 3.
Crypto units/engines can be misused without detection.

(12) “Crypto-Keys/Units are protected - crypto-misuse is de-
tectable”.

Because keys are never allowed to be shown in cleartext, systems exporting
keys are flagged. All devices of that type would then be excluded from receiving

2028 – Hacker-AI, Cyberwar 2.0+

168

protected/secret keys. Additionally, compromised keys are replaced automati-
cally without providing any hints that this has been done. All potentially com-
promised keys are used as honey-pots. Using protected keys by non-protected
encryption/decryption hardware can be detected reliably via (aggregated) data
that is being stored about the key usage.

The misuse of crypto components is detectable because multiple security or
crypto-key units watch each other if being misused. Covert misuse cannot hap-
pen. Still, misuse attempts are being traced to attackers and their tool use. Mal-
ware has no access to keys as they are all managed and processed within the
Security Domain. Also, the use or misuse of the Crypto units is being
stored/logged via algorithms inaccessible to software within the regular do-
main.

Hacker-AI-related Issues/Solutions
Hacker-AI activities can proactively be stopped because of the strict sepa-

ration of regular computation from security-related features. Once we can stop
unknown apps, i.e., apps with unknown hashcodes, from being loaded into
RAM, we are taking away malware’s foundation from existing on a device. Still,
additional proposed measures as redundancies malware slipped through the
cracks.

Furthermore, we will have different situations for each device because we
initially have only a software-based and not a (retrofitted) hardware-based se-
curity solution. This is problematic for smartphones and other devices for
which we cannot provide retrofits.

Let’s repeat what we need to accomplish. The proposed security solution
must protect us against malware generated by Hacker-AI, which has the follow-
ing main capabilities: (a) finds vulnerabilities or actively create vulnerabilities for
rights-/permission-elevation, (b) steals or misuses encryption keys, (c) hides as
a Cyber Ghost, i.e., circumvents detection methods, and (d) making itself irre-
movable on a device.

Methods against the first three capabilities were already discussed above and
should not be repeated here.

The irremovability (d) is an issue that has not been addressed or explicitly
discussed here. If Hacker-AI tries to make itself irremovable after the security
components are deployed, then Hacker-AI’s malware is likely rejected by one
of the redundant security measures due to unknown hashcode or failed access
to the security domain, etc. Additionally, it would be rejected when trying to
create a beachhead or find a Cyber Cradle. Gaining sufficient information about
systems, i.e., probing the relevant security, is likely very expensive for a Hacker-
AI as it would need to waste or burn through many vulnerabilities, attack tools,
and methods, which are revealed to cyberdefenders after their first use.

However, what if a Hacker-AI is already on a device or has left a private
backdoor on the system? The problem is that we can’t give a definite answer if

2028 – Hacker-AI, Cyberwar 2.0+

169

we have only software-based security. We must assume that this malware with
Cyber Devil-type features will relentlessly try to sabotage all new tool compo-
nents and prevent the separation of security and regular operations. Without
additional hardware, we won’t be safe. Even with new hardware, we should be
very cautious if Hacker-AI has not left some low-level surprise backdoor within
our security layer.

In developing the proposed security components, we must assume that
Hacker AI already exists and is active, although it may not. This scenario is
discussed as being too late in developing or deploying security measures which
are done in the next chapter.

In short, if Hacker-AI malware is already irremovable on devices, then we
have very little chance of getting it removed with software-only security
measures. Only hardware (Executable Watchdog) as a separate component
within the databus could give us control back if we would also clean all possible
hideouts and ensure that we will have deep hardware-based backdoors in our
new security domain.

Still, the most important solution component will be our hardware-based
crypto-key secrecy and multi-unit crypto-/security protection against misuse. If
these components are available, we may have a chance to get full control back
over the CPU, RAM, and our hardware-based security domain, even if it was
compromised initially.

Cyberwar 2.0 - related Issues/Solutions
Hacker-AI-based malware is an essential component in Cyberwar 2.0. As

soon as malware cannot be used on attacked devices, perfectly executed
Cyberwar 2.0 or Cybercrime 2.0 scenarios are no longer a lingering threat. The
risks for assailants can be increased, and non-technical defense measures could
make sense.

Cyber Reconnaissance via smartphones becomes much more difficult. If
companies (operating a widespread smartphone app) would collaborate with an
assailant, then getting reconnaissance data via updates in their software is still
possible. The same must be said about allowing attackers to have Cyber Beach-
heads and access to rights or permissions elevation on these devices. But the
problem is that the assailant and the collaborating software manufacturer could
be caught much sooner. Their actions would likely leave data traces they cannot
remove because of the separation of security and regular domain.

We won’t be able to prevent an assailant from preparing for Cyberwar 2.0
via building a tech library of more vulnerable legacy devices and tech simulators
testing and training their attack tools. We also need to expect that an attacker
would work on a Cyber Patsy Designer and Attack Synchronization Manage-
ment to be at least prepared to simulate different Cyberwar 2.0 scenarios and
deflect the authorship for cyber operations to others.

2028 – Hacker-AI, Cyberwar 2.0+

170

Still, a determined assailant could learn from the concept of Cyberwar 2.0
and use direct access to countries’ citizens to get collaborators for doing tasks
manually that could lead to significant problems in the continuation of a gov-
ernment or the preparation of military defense actions. If a Cyberwar 2.0 sce-
nario without full Hacker-AI capabilities is still a threat, i.e., could still trigger a
government overthrow or regime change, it cannot be answered without know-
ing additional non-technical (political/legal) defense measures.

Developing and deploying countermeasures against Cyberwar 2.0 requires
an understanding of country’s vulnerabilities from battlelines that could go
through the entire civil society. Without a broad deployment of technical coun-
termeasures against malware from Hacker-AI, the threat from operational
Cyberwar 2.0 measures will remain.

We could see an arms race between defenders and attackers. Still, with pro-
active, preventative, separate, and redundant cybersecurity solutions, we could
give cyberdefenders a fighting chase. However, vulnerabilities from legacy sys-
tems will remain a significant problem for many years.

New Cybersecurity Paradigms
Seeing problems or issues slightly different has a significant impact on con-

clusions or motivation for actions. Problems can often be ignored or reevalu-
ated because we view something differently, i.e., based on new paradigms. Un-
fortunately, some current cybersecurity-related ideas and paradigms are detri-
mental to improving security.

The following list should serve as a start:

(1) Do not Trust CPU/OS.
Cybersecurity knows that CPU’s and OS’s complexity are the core reasons

for most vulnerabilities. But shared opinions are seemingly insufficient to ac-
cept that this has consequences for IT’s design and architecture. Physical sepa-
ration of CPU tasks in security-related and regular tasks will make a huge dif-
ference. If we don’t trust the CPU/OS, then we should not use it for security.

Security/control operations are (usually) rigid/static, while all other (regular)
operations are versatile and dynamic. Separating security is similar to circuit
breakers or fuses in power distribution, i.e., it has little complexity in its on-/off
feature.

Security operations can be protected much easier when security is not com-
mingling within the main RAM. As a result, regular algorithms would have no
access to security. A databus cannot be bypassed, which makes it a near-perfect
location for a circuit breaker, i.e., separating and providing independent security
components.

2028 – Hacker-AI, Cyberwar 2.0+

171

(2) Regular Local Code Validation.
Once installed, software is often considered safe/secure. But software can

be modified or reconfigured covertly without being detected as a malicious act.
Instead, we could hashcode all local executables and enrich them with data

inferred from statistics, which makes them graylisted, or via voluntarily shared
registration data from manufacturers, making these hashcodes whitelisted.
Apps with unknown hashcodes are rejected by default.

Once additional data are cached locally; they can be (regularly) used to detect
deviations from known software details for instant reporting.

(3) Software Developers must be made Trustworthy.
Medical doctors, lawyers, and financial advisers already have self-regulating

rules providing a minimum level of quality control for the public. The same
should apply to software developers and manufacturers. We should know at
least that they are not cybercriminals. Additionally, we should be able to make
them accountable if they cross any red line.

Developers’ truthfulness with (independently validatable) safety-relevant
product disclosures is associated with reputation. Information shared on their
software could help significantly determine what threats or surprises we should
not expect as regular/accepted software behavior. The developers and manu-
facturers are responsible for feature integrity and reasonable security-measure
within the disclosed security-relevant operations.

Problems within disclosed product features are accepted as (normal) bugs.
We don’t assume maliciousness until we see evidence (like exploits or back-
doors).

Deviation from disclosures would automatically raise suspicion. Deceitful
exploits in apps would ruin a developer’s reputation, while creating vulnerabil-
ities accidentally is normal, harmless, and would be ignored as a problem to a
developer’s reputation.

(4) Preventing Key-Cleartext Disclosures.
Adversaries determined to steal keys could modify via reverse code engi-

neering key processing CPU/OS software. Therefore, key secrecy should mean
the main CPU does not process crypto-keys; only protected CPUs are permitted
to process secret keys.

Every key that appears or could theoretically appear in cleartext on the CPU
must be considered compromised, and all hardware devices that could (theo-
retically) reveal protected keys must be flagged as unreliable for processing se-
crets.

2028 – Hacker-AI, Cyberwar 2.0+

172

(5) Establishing Multi-Unit-Security.
Device components are not independent of the OS. Therefore having secu-

rity components interguarding each other would currently be useless. Accord-
ing to generally accepted design principles, fewer components are considered
better than more, but isolated units are prone to misuse.

However, if we have independent Multi-Unit-Security, we could use it to
have reliable security units watching each other if any among them is or was
modified.

(6) Security Execution/Detection must be Automated.
We should distrust provided security if humans are directly involved in any

non-high-level or operational aspect of security. Only independent automation
guarantees reliable rule execution. Humans should be prevented from making
(security-related) exceptions.

We can use proactive and preventative conditions for rule violations or dam-
age detection if we know what to expect. All automation methods/rules are
protected against (covert) modifications, reconfigurations, or updates.

