
149

11. Countermeasures:
 Technical Solutions For Hacker-AI

Introduction
In previous chapters, I repeatedly used the hypothesis: if software has vul-

nerabilities, Hacker-AI will find them. Additionally, we should assume that soft-
ware has backdoors or sleeper code. With Reverse Code Engineering, Hacker
AI is flexible enough to find ways to manipulate every system (i.e., any OS,
CPU, or device type), steal crypto keys, modify other software, to remove data
traces it inadvertently generates. Hacker-AI could generate malware that ma-
nipulates the underlying OS to become undetectable and potentially irremova-
ble on every device it visited. Once it repels late-coming similar advanced mal-
ware, it could become the only malware.

Under these circumstances, how can we have security? How can we trust
any security tools that we develop? Well, this should be no surprise. It is the
result of what we did to ourselves. It is not that devices are vulnerable by acci-
dent. I am not saying that it was done deliberately. That is not true, but it was
responsible for that. We are even accepting this. We are accepting the trade-off
that we pay for security. More expensive is likely safer (which is, BTW, not
true). More money into cybersecurity has not improved anything. It is more
convenient to leave things as they are because that seems to be the safe solution;
at least, no new bugs.

The problem is: our cybersecurity was never safe. Security was always part
of a trade-off with other goals: convenience, performance, and, of course, costs
- but more: why should we risk regular income from updates or subscriptions?
Currently, no single cybersecurity solution could deliver alone a solution. Fire-
wall manufacturers can’t solve the problem of threats from the Internet. Anti-
virus solution providers can’t protect us from malware, spyware, or ransom-
ware. Even the Operating system providers cannot make their solutions safe
alone.

Well, hacking without permission is illegal. Breaking the security of systems
without authorization is illegal. But it’s still done. That successful hacking exists
is not the hackers’ fault; it is a deep problem with the underlying technology.
Once hackers are using AI, things can get worse quickly. Who cares about le-
gality if governments or out-of-reach criminals use it?

There is no doubt: Hacking or hacker-AI cannot be prevented or limited by
governmental regulation or international treaties/diplomacy. Instead, we must

ewi
Typewriter
2028 - Hacker-AI and Cyberwar 2.0+
(Securing our Future: Proactive Resilience through Separated Security Measures)

ewi
Typewriter
ISBN: 9798375252568
Copyright © 2023 Erland Wittkotter, Ph.D. All rights reserved.

2028 – Hacker-AI, Cyberwar 2.0+

150

have reliable technical solutions to counter cyberattacks. We must develop these
solutions fast.

We have deeply buried ourselves in a quagmire of problems with security
and safety. All we do is ignore them and push them down the road. Single so-
lutions can help, but they are not good enough anymore. Instead, we need so-
lution redundancy in cybersecurity urgently. No single point of failure anymore.
The saying that a single vulnerability is enough to invalidate all other measures
is (so far) true, but accepting this is very dangerous.

On the other hand, having security or safety in software does not mean we
won’t suffer any harm or damage from software anymore. Software has bugs;
this won’t change. Some software has even vulnerabilities, but who cares if they
are not usable because of redundancy? Still, software will run in environments
without reliable redundancy; all users deserve safe software without vulnerabil-
ities. We should also find vulnerabilities must faster.

Unknowns, i.e., unknown security issues, are often huge problems. We don’t
understand their danger or scope. We often accept unknown knowns by admit-
ting that we have information, but their existence, relevance, or value has not
been realized or fully understood. Another word for this is ignorance. Unfortu-
nately, our culture accepts or accuses ignorance of certain problems because we
have so many problems. Everyone knows they are ignorant about something,
but being ignorant within security is a very bad sign. If this happens within
regular product safety: see you in court.

Also, we have unknown unknowns, i.e., unexpected or unforeseeable con-
ditions or circumstances that pose a greater risk because we don’t anticipate
them based on experience or investigation. Once problems derived from un-
known reasons show up, they are no longer unknown unknowns; they are
knowns but poorly understood. The problem is our attitude toward security
problems. How long does it usually take that security problems to be fixed? It
depends on how serious these issues are being taken or what are the possible
ramifications of a security vulnerability. These assessments could be wrong. In-
stead, we should be much more aggressive and hawkish about security prob-
lems.

Solution Components
Current cybersecurity is overwhelmed with the challenges it has to face. It

has to deal with different threat scenarios, and users don’t want to be stopped
by security’s limitations. Additionally, security gets a lot of lip services, i.e., how
important, some say even essential it is; but it loses (often) in trade-offs.

Due to the lack of security, people and businesses suffer hundreds of billions
of dollars in losses worldwide. Unfortunately, there is not a lot of critical self-
reflection in cybersecurity. Business is booming, and critique is deflected and
turned into blaming others.

2028 – Hacker-AI, Cyberwar 2.0+

151

Our goal should be proactive, preventative, independent, and redun-
dant cybersecurity. Most security measures must be low-level and unnoticea-
ble to regular users; otherwise, these methods will be attacked. We should aim
for redundancy of independent security, protection, or detection methods that
can be called “security overkill”. Still, it must be unnoticeable to users to be
acceptable.

Many architectural mistakes were made around security in the past - they
will be mentioned below. Although it is not perfect, proposed solutions must
fix the security problems via software updates first, then with hardware retrofits
(next) - before we have products with security by default.

Some were asking, why bother about past products? We have a huge prob-
lem with (unprotected) legacy devices - we depend on them, and the change to
a more secure cyberspace would happen too slowly if we ignore legacy devices
and systems.

Unfortunately, a single solution cannot solve the promise of proactive, pre-
ventative, independent, and redundant. However, I believe the proposed solu-
tions are easy enough to deploy and acceptable within the existing IT ecosys-
tem.

The most significant change is (A) self-regulation among developers. Devel-
opers need to be accountable for their developed apps, done with (B) hashcod-
ing, without exception. Hashcodes can make software easily identifiable, inde-
pendent of their names. When software codes are registered, they are linked to
real people with reputations. The next proposal is Separation (C): regular oper-
ations should not impact security operations - no mixing or commingling. (D)
Keys are protected from being stolen by not allowing them to appear in
cleartext anywhere. (E) Crypto devices or security components are protected
from misuse or modification by having them watching each other. And finally,
(F) low-level security must be highly automated, i.e., we must react to global
Hacker-AI threats instantaneously; humans involved would slow us down.
Now, let’s go into each proposal more deeply.

(A) Making Developers Accountable
Using software is not so different from taking medicine prescribed by med-

ical doctors or legal advice from lawyers. These occupations and others, e.g., in
financial services, have self-regulatory rules protecting the public from rogue
pretenders claiming professional reputations.

Often, governments demand regulation, but they are not doing it for the
business sectors. Governmental involvement could give official approval too
much importance. Instead, peers within a business sector set and apply rules
because they have the expertise to know what is normal or an unacceptable
anomaly. Most business sectors have an intrinsic interest and common motiva-

2028 – Hacker-AI, Cyberwar 2.0+

152

tion to keep their occupation free and clear from scandals. If they are too for-
giving with bad apples, then this could turn into some outrage about their com-
plicity quickly.

Self-regulating bodies are kicking people or businesses out, preventing them
from making a living in their profession. They do this to preserve their stand-
ards, particularly their compliance with their ethical or legal standards. Being
expelled from making a living with skills and knowledge for which a rule viola-
tor invested years of their life is an impressive wager for doing these services.

Self-regulated business sectors create internal policies and procedures for
ethical decision-making, establish codes of conduct, and implement systems for
monitoring and enforcing compliance. This effort builds customer trust and
reduces the likelihood of legal action against companies. Over time, it helps also
to identify and mitigate risks. Examples of self-regulation are industry standards
and guidelines.

I propose that every code or software is registered automatically via unique
hashcodes before being delivered to customers. This transparency creates indi-
rectly enforceable accountability for intentionally inserting malicious code
(snippets). As an immediate benefit: using hidden vulnerabilities (backdoors) or
exploits by developers would become risky, reputation-damaging behavior. The
transparency of registered software creates both: evidence and deterrence of
wrongdoing.

In this process of registering, manufacturers and developers share (volun-
tarily) additional information on software’s relevant capabilities and third-party
components, which could enable us to detect suspicious activities easier. 3rd
party components providers could quickly notify all impacted developers about
their fix.

When developers tell us about security-related features, done via simply an-
swerable checklists and checkboxes, they indicate that they are aware of features
that could cause harm or could damage users. Developers are expected to take
these disclosures seriously because their reputation depends on that, or software
tools within their software development environment will do that for them re-
liably or support them significantly.

Registering is not about tracking developers’ performance, calling out devel-
opers for making mistakes, or creating unintentional vulnerabilities. This pro-
posal is designed to create a well-earned reputation based on comprehensive,
truthful disclosures and responsive, cooperative behavior in case of problems.
The additional work is minuscule compared to the value it creates for all in-
volved.

(B) White-/Gray-/Blacklisted Hashcodes
Every software file (including software library or script) is hashcoded and

managed within the context of a software publication. Software is considered a
perfect clone; no variations within the executables. Some variations could be

2028 – Hacker-AI, Cyberwar 2.0+

153

allowed, but these are then variations under observation. Manufacturers or soft-
ware developers could be consulted if it indicates something more nefarious.

When hashcoding is started, i.e., as a new layer of security, hashcodes are
confirmed/validated (as known) via server requests (validation or rejection) and
then cached in a local repository as known. Or if there are unknown hashcodes
within the context of the software, then the hashcodes are locally
stored/flagged as suspicious.

Hashcodes are linked to known software packages; validation can be derived
from statistics (i.e., an overwhelming vote indicates that the component is part
of the original publication). Hashcodes are not necessarily from registration.
Non-registered hashcodes (accepted based on statistics) are called graylisted. If
the number of votes is too small to determine if hashcodes are acceptable, they
are then flagged for a later round of server-side validation.

The new normal should be that hashcodes are voluntarily shared via regis-
tration data coming from manufacturers. These hashcodes are called white-
listed, approved-listed, or simply accepted. The validation server provides for
accepted hashcodes software-related (additional) data, which are also cached
locally. These additional data are used independently and redundantly (by what
is later called watchdogs) to determine if the software was covertly manipulated
in RAM to anything else than originally designed. These watchdogs instantane-
ously report any deviation from known software behaviors.

Blacklisted hashcode or block-listed is hashcoded software that is known to
be harmful or known to be manipulated by attackers. No executable on that
blacklist can be loaded into RAM anymore; only white- or gray-listed executa-
bles are allowed. Most importantly, no unknown code, not even a script, is ac-
cepted in RAM or by the CPU.

Therefore, only known and trusted software could (theoretically) exploit
vulnerabilities. But, if that is done, it would have severe reputational conse-
quences for the developer or manufacturer doing that. And then, it is up to
users or device owners if they accept graylisted software or insist on whitelisted
software.

In a closing note on this solution: I prefer the terms white-, gray- and black-
listed hashcodes or software because these colors form a certain unity in their
terminology. They are quickly associated with each other, which can’t be said
when we call black-, block-listed, or white-, accepted-listed. But terms are con-
ventions and are called whatever we agree to call them. I will side with the ma-
jority.

(C) Separate Security-related from Regular Computations
Before being provided for execution to the CPU, executables and their data

are in a single place: RAM. The OS manages access to data or executables
loaded or stored in RAM. The OS is the sole instance providing security meth-
ods for all data managed in RAM. The CPU manages security-related software

2028 – Hacker-AI, Cyberwar 2.0+

154

in different “security rings”, but it is still not sufficiently protected against reg-
ular software sharing the same memory space. CPU’s security ring manages
privilege levels (0 most and 3 least privileged) that dictate what operations a
process can perform.

Some OS providers claim their system is secure/safe based on the software
they are using; unfortunately, that cannot be taken at face value. It is extremely
difficult to prove that systems are secure (and words are cheap). Complex sys-
tems are not perfect; they have vulnerabilities. We must assume that Hacker-AI
will find these vulnerabilities and exploit them.

I propose: Due to the complexity of CPU and OS (and their interplay), these
systems should be left alone, i.e., we can ignore them as “the deciding voices”
when it comes to security decisions. We leave them as they are, and if the OS
or other code wants more than (unaltered) security would allow, then a second,
independent, preferably separate (duplicated) instance would stop that. The ad-
vantage, we have the old, regular security and an additional separate (incorrupti-
ble) security that steps in when we need to be suspicious of the regular code.
This measure duplicates the checks (i.e., redo the check by the OS within the
regular domain) if security-related tasks are not violating security rules.

So, we create another layer for security-related features, i.e., independ-
ent, separately controlled access to storage and network features (Executable
Watchdog, Content Watchdog, and Network Watchdog - explained later).
There are (other) good but not vital reasons that this layer is (potentially later)
extended to in-/output features, like mic, video-cam, or other hardware re-
source-related features.

All software within this security layer, which I call the “Security Domain”,
cannot be changed undetected. This domain is designed to be “untouchable”
by regular/normal software, i.e., software from the “Regular Domain”, in which
we have the OS software and software supported by the main OS, i.e., very
software, including user software and eventually malware.

All security-related requests are accepted (i.e., passed-through) or rejected
by this additional security layer. The OS can easily handle situations when exe-
cutables can’t be loaded, or files cannot be overwritten or modified. Because
OS should have rejected and not accepted an operation (the security layer re-
jected it), we have a situation in which software was likely misused based on a
vulnerability. This event is not relevant for a system protected by the security
layer, but it is important for the other systems that want this flaw is being fixed.

The security layer uses for stored files/apps (locally) cached hashcodes and
additional data (voluntarily provided by developers) for accepting it.

This security layer also keeps all software up-to-date by facilitating automatic
updates. We must insist that all software is current and fully updated for security
reasons.

2028 – Hacker-AI, Cyberwar 2.0+

155

I visualize the security layer as being guarded by several watchdog compo-
nents that can’t be bypassed, like a bridge. All data between RAM and the stor-
age or network component must go through the cable of the databus - there
are no other connections that an attacker can use to bypass the databus. The
Harddrive is connected via a serial cable connecting the motherboard with the
drive; we could replace the cable with another cable that includes the additional
hardware providing this independent (separate/duplicated) security, or this
component could even be included in a bridge connector on either side of the
serial cable.

The Executable Watchdog protects all executables from being manipulated
covertly. With this watchdog in place, we can have more (incorruptible) trust in
software/instructions loaded in RAM. The Content Watchdog protects user-
generated content, e.g., against ransomware. It is a (redundant) component if
some executable acts suspiciously, i.e., wants to do more than reported by the
developer within their registration. The network is being protected with the
Network Watchdog, which serves as a low-level firewall. This watchdog pre-
vents software from misusing the network for suspicious activities like piggy-
backing within the data exchange or from spyware.

This security layer, with its watchdogs, could be inserted in an independent
hypervisor as a software-only solution. This hypervisor is a super-supervisor
below all main OS activities. The watchdog activities in this hypervisor are the
same as the separate security hardware versions, but they are in the same main
RAM, outside the memory that the main OS can access. The software solution
is probably ok. However, I would never bet against an AI. It’s much better to
have independent hardware for security.

The main problem with every software-only solution is that watchdogs, like
every other security software, require unmanipulated hashcode data, i.e., it re-
quires reliable encryption in which crypto-keys cannot be stolen and used to
manipulate encrypted or digitally signed data. Because software-based en-/de-
cryption on the CPU can never be trusted, a software-only solution is not per-
manent. An advanced Hacker-AI can likely breach software-only security be-
cause it has stolen (cleartext) crypto-keys; this is unacceptable when security
matters.

Unfortunately, I am not sure if additional (software-based) hypervisors and
security layers are enough for existing (i.e., current generation) smartphones.
Additional research and ideas are likely required to make smartphones more
resilient against spyware. I am not saying that this is not possible (yet).

(D) No Crypto-Key in Cleartext
Security and secrecy of crypto keys are considered very important, essential,

and even indispensable. Information security and cryptography have a history
worth mentioning. They are spin-offs from hot and cold wars. With only a few

2028 – Hacker-AI, Cyberwar 2.0+

156

changes, cryptography was commercialized for the Internet. When used for the
military, malware was not part of that threat environment.

New ideas were introduced in commercial cryptography, but three malware-
related problems were not sufficiently solved:

(1) Keys can be stolen (undetectable, covertly) on both sides: sender or
receiver systems,

(2) Crypto units/engines could be manipulated (and turned into traitors),
(3) Crypto units/engines could be misused without the knowledge of the

owner/user.
And the consequences today: tens of trillions $ of eCommerce revenue and

national security depend on commercial encryption. If malware does anything
of the above covertly, then we are in deep trouble.

In this section, I focus on the first problem, i.e., that keys can be stolen, and
I leave it to the next section to deal with the crypto-units or engines.

To protect keys’ secrecy, we must demand that no crypto-key appears in
cleartext in RAM or within the main CPU (ever). I repeat, no key in cleartext
outside of controlled, protected units - Never, ever.

Due to many OS vulnerabilities, keys processed by unprotected CPUs/OS
must be considered compromised. All crypto processes must happen in com-
ponents outside the main CPU and OS. No key should be allowed to be shown
in cleartext. That means we must have separate/independent encryption and
decryption units (EDU), i.e., crypto units/engines, with protected key storages,
i.e., keysafes. Together, crypto-units with keysafes manage all crypto-related
processes without exposing the used crypto keys to the outside.

Additionally, every key use must be tracked reliably (e.g., via the number of
uses or checksum of exchanged data), enabling us to detect misuses inde-
pendently - redundantly. A single protection method will not suffice if we deal
with Hacker-AI. Redundancy to a level of “security overkill” should be imple-
mented on a lower component level, unnoticeable for users - fully automated
and invisible in its details.

PKI (Public Key Infrastructure) provides secure communication and digital
identities by using a combination of public and private encryption keys and a
central authority for issuing and managing those keys. The public and private
keys are different. Currently, public keys in PKI are announced via unprotected
certificate files so that they can be inspected by humans visually. But no one
cares about that. How often in the last 20 or 30 years have humans manually
inspected crypto-key details in a PKI certificate? These operations are auto-
mated; the mathematical operations are standardized. There is no need to debug
basic algorithms used in en- or decryption or being tested on real keys. Humans
have no business seeing any key. Providing public keys in cleartext is a severe
mistake.

Therefore, I propose an intentionally incompatible PKI+ in which public
keys don’t appear in cleartext. Currently displaying, these keys are used in PKI

2028 – Hacker-AI, Cyberwar 2.0+

157

to identify owners of key pairs. They can say, see, I can publish my public key
with my name - use my key, and you can send me messages that only I can read.

I propose additionally that all keys are referred to via their computed hash-
codes; this is enough to associate keys with devices and users. Making this con-
nection is based on the history of usages in which misalignments between iden-
tities and keys/hashcodes are easy to detect because we deal with reliable hard-
ware (with unique keys), and not easy to copy keys as in data strings. Also,
hashcodes don’t spread info on any public/private key pair - their key size could
be significantly reduced.

Only hardware-based crypto-units (the mentioned EDUs) have keys (from
their manufacturing process) capable of creating protected connections with
key directories - no software version of the EDU could have this information,
except it would use compromised keys.

Additionally, instead of using a single keypair for popular service, as we do
right now, we could have 100s or 1,000s of Multiple Equivalent Secret Keys.
There is no scarcity in creating more keypairs and no penalty for having more.
On the contrary, different crypto units/devices could have different small sub-
sets (of these equivalent secret keys), and the entire subset of keys is used in
sending/receiving session keys. Only the original crypto-unit/EDU can know
all secret keys. It would lose or change keys when the EDU hardware is probed
physically. The hardware design of the EDU would destroy all other keys after
a single key is extracted in cleartext forcefully.

Without hackers gaining covert access to session keys or public/private key
pairs, we can be much less concerned about the manipulations of exchanged
data (e.g., via a man-in-the-middle attack - this is just a sidenote for some ex-
perts who know what that means).

If an adversary could steal keys, they are automatically deactivated seconds
after detection, replaced with new keys but kept usable as honey-pots. If keys
are only suspected to be compromised, they can be flagged and turned into a
honey pot. Key replacements are cheap; they are automatically replaced without
letting anyone know. Even if key safes are damaged, they could be restored
using the cleartext hashcode provided from a backup.

(E) Interguarding Multi-Unit Security
This proposal goes much deeper into how software and hardware must be

developed (for security). We built technology up from components; these com-
ponents are based on reusable patterns that are organized in what is called a
component architecture. This approach is designing and organizing individual
building blocks (components) in a modular and reusable way.

Each component is a self-contained unit of functionality that communicates
with other components through well-defined interfaces. This method clarifies
and separates concerns and makes it easier to change or replace individual parts

2028 – Hacker-AI, Cyberwar 2.0+

158

without affecting the rest of the system. So far, this approach has enabled us to
develop, maintain, test, and scale our technology reliably.

The current best practice in component architecture is to have the least
number of (hard- or software) components with a generic purpose; ideally, it is
one. This philosophy is applied in, e.g., encryption, where one component is
sufficient for all crypto applications. There is only one TPM (Trusted Platform
Module), or there is usually a single crypto card with hardware storage for pri-
vate or session keys.

However, if an adversary can stealthy access or interface with these compo-
nents, it could covertly impersonate the owner/user and misuse this component
without having resistance. There is no independent detection by other compo-
nents that a misuse just happened. This problem is also known as the API-
Problem - API stands for Application Programming Interface; it refers to the
problem that it can be very difficult for the crypto cards/units to determine
whether a request (i.e., use of encryption keys and digital certificates) is legiti-
mate. Crypto cards rely on secure communication and authentication to ensure
that only authorized parties can access them. However, these channels, mecha-
nisms, or the request’s source can be compromised through malicious attacks.
That is bad news for owners of crypto cards; they are on the hook for damages
done by misusing these cards.

But if we have multiple components, each having an autonomous and inde-
pendent OS specialized in specific tasks, they could watch/inter-guard their
neighbor instances for covert changes and misuses. A single compromised in-
stance could be prevented from reporting that it was manipulated, but other
instances could be enabled to detect/report these anomalies automatically.
These validation events (like tripwires) could trigger hidden inspections if the
crypto-related code were manipulated, how this attack was done, and which
components must be watched or considered compromised or insufficiently dis-
closed by its original developers.

So, with multiple crypto-units/EDUs independently watching each other if
the right/allowed software is used, they create a local network of trust among
its units that an attacker must overcome.

Secure updates of security components are based on Multi-Unit Security and
a public countdown involving a large group of human experts. We must ensure
that (unauthorized) software updates can’t happen covertly. This can give us
the confidence to change, fix, or extend security device features. With this new
Multi-Unit Security approach, software changes are much easier, safer, and
more transparent than the handling of changes to immutable software within
microcontrollers, which requires a small group of experts to replace (secret)
software within new hardware components - while the old controllers with their
software remain vulnerable on the old systems.

2028 – Hacker-AI, Cyberwar 2.0+

159

Lets’ go back to the second and third malware-related problems that com-
mercial cryptography must solve, i.e., (2) Crypto units/engines could be manip-
ulated and turned into traitors, and (3) they could be misused without the
knowledge of their owner/main user. Multi-Unit-Security can be designed to
detect and prevent manipulation of its locally connected units. However, covert
misuse (i.e., (3)) of crypto components is more difficult and less reliable to de-
tect. It depends on the context - we may not always prevent it, but we could
detect it.

Crypto-key and crypto-unit misuse is a serious issue for humans: we must
know the source of a request, or we have the potential for misuse. We will have
security breaches when we don’t have a redundant overkill of multiple inde-
pendent security measures. All apps are hashcoded, and we could make some-
one accountable for inserting malicious code into their software. We may not
be able to prevent a bank robbery, but we will know who did it. Then we can
include an additional barrier that can prevent reliably that this doesn’t happen
again.

Crypto-key- and crypto-unit-security require an architectural overhaul based
on these new paradigms. The security must be proactive, i.e., no keys in
cleartext. Also, it must be preventative, i.e., all relevant units must check each
other for attack signs continuously and randomly. These measures must be in-
dependent, i.e., within physically separate components, and finally redundant,
i.e., detecting if compromised keys or misused crypto-units were used anywhere
- which would trigger an automated investigation without human involvement
to narrow down what/who was or could be involved and then who did it.

These kinds of security measures seem to be overkill. But that is what secu-
rity demands, particularly if we are dealing with a Hacker-AI capable of creating
attack methods that will likely be beyond our comprehension. We cannot have
a second security overhaul to accommodate threats from an artificial superin-
telligence that is doing system hacking much better than the most capable in-
telligence service.

(F) Automated Security
Humans are usually the weakest link in security. Human involvement is

sometimes dangerous because humans could be deceived, blackmailed, or
turned into traitors. Frankly, humans should have no business being involved
in low-level security.

Secrets must be protected from humans, with no exceptions for special
roles. When security, protection, and detection processes are automated, it is
easier and more reliable to protect security measures from covert modifications.
Any attack on automated security can be detected as a severe anomaly that must
be investigated (automatically) to determine patterns or possible vulnerabilities,
or undisclosed capabilities.

2028 – Hacker-AI, Cyberwar 2.0+

160

Cybersecurity automation provides speed, efficiency, scalability, con-
sistency, cost-effectiveness, comprehensive coverage, and predictive capabili-
ties to detect and respond to security threats.

Automation allows faster and more accurate detection, including response
to security threats; it reduces response time to mitigate a security breach and
minimizes the impact on devices and their data. We can handle larger events
and keep up with the ever-increasing volume and complexity of threats. We can
enforce security policies and procedures more consistently and reduce the risk
of human error. Automated systems do expensive and time-consuming tasks
24/7; they can also do repetitive tasks like monitoring processes or analyzing
large amounts of data more efficiently than humans. Automation will allow us
to use machine learning to identify patterns and anomalies in data and to predict
and prevent potential security breaches before they occur.

Full low-level automation is required, mainly because Hacker-AI attacks
could happen quickly. The defender’s reaction speed will determine whether
camouflaged malware from Hacker-AI continues to be accepted or blacklisted
before it can form a beachhead.

But this automation will not replace humans in cybersecurity entirely. Hu-
man expertise, judgment in the field, decision-making, and human oversight are
necessary to manage and interpret results. Cybersecurity teams will need to col-
laborate with automated systems in complementary ways in helping to enhance
our security posture and to make the most effective use of both human and
machine capabilities.

But some information and processes must be outside human reach for the
security and protection of the humans involved. There might be a few tasks
within incidence investigations where humans could provide value. However,
having oversight, having the tools to enforce a final verdict in big decisions, and
allowing or denying validated updates to security components are competencies
humans can’t give up.

