
49

4. Hacker-AI - Basic Features and Consequences

Overview
I will discuss Hacker-AI as a tool and part of military strategy, a cyberwar

that I will call Cyberwar 2.0. Hacker-AI features are discussed within cyberwar
segments (i.e., distinct phases or stages that achieve specific objectives). I as-
sume four main cyberwar phases: preparation, attack, exploitation, and protec-
tion of gained position.

The Hacker-AI features will be all about tools or capabilities: Preparation
involves planning and organizing resources for cyberwar’s subsequent cam-
paign phases. The attack involves tools to achieve specific objectives, such as
capturing “ground” or positions within “occupied devices”. Exploitation in-
volves continuing operations to take advantage of the gains from the attack
phase. Finally, the protection of gained positions provides tools to secure and
consolidate the advantages made during the previous campaign phases; it will
prepare with tools for potential (late-stage) counterattacks by defenders, new
adversaries, or challengers.

Feature-list
I will discuss a list of specially named features. This list provides us with an

overview of what could be expected from Hacker-AI. The chosen names with
their included features were chosen to resemble the goals that the feature is
expected to accomplish.

Preparation - Information Gathering
1. Tech Library: Library of hard-/software details, including small prod-

uct version differences. Repository of everything worth knowing by AI
that develops software for every tech platform

2. Cyber Reconnaissance: Getting details (type, owner) about as many
devices and their software as possible. Also, understanding concrete
usage patterns, device locations, or owner’s occupation

3. Tech-Simulator: “Sandbox” on which hacker solutions for all devices
known in the real world are developed quickly, safely, and reliable

Hacker-AI will try to gain access to as much information as possible
about technologies, devices, and software details. The Tech-Library also

ewi
Typewriter
2028 - Hacker-AI and Cyberwar 2.0+
(Securing our Future: Proactive Resilience through Separated Security Measures)

ewi
Typewriter
ISBN: 9798375252568
Copyright © 2023 Erland Wittkotter, Ph.D. All rights reserved.

2028 – Hacker-AI, Cyberwar 2.0+

50

contains past technologies because software revisions contain valuable les-
sons for hacking security features. The Tech Simulators will utilize these
details to create proactive or on-demand solutions the deployed malware
uses.

Attack Tools
4. Cyber Beachhead Planner: Tools to get software on attacked device;

bootstrap its deployment
5. Rights- or Permission-Elevation: Hacking methods so that malware

can do whatever it wants
6. Cyber Cradle Builder: Tools for malware that needs/finds on device

hideouts to stay protected.
7. Cyber Whisperer: Having reliable backdoors and stealth piggybacking

of data exchange; operating backdoors via existing user communica-
tion methods

The attack is segmented into 3 main phases: entry (beachhead), expan-
sion (bootstrapping/rights elevation), and position building (hiding-out).
Additionally, methods and tools are introduced to facilitate stealth/covert
communication within these 3 phases.

Attack Exploitation
8. Cyber Masterthief: Tools to specifically steal data like user credentials

and crypto-keys
9. Cyber Freeloader: Utilizing other device apps, resources, and features

(i.e., living off the land)
10. Cyber Covert/Shadow Recorder: Surveillanceware that stores from

multiple devices pre-processed (aggregated) all relevant intelligence
about a user

Hacker-AI will steal what it needs, including crypto keys and user cre-
dentials; it can enable malware to use all device features and resources (stor-
age, camera, mic, etc.). Finally, malware can surveil a person and create pre-
processed and (almost) immediately usable/operational intelligence.

Fortification/Protection of Position
11. Cyber Ghost: Undetectable software that avoids any (suspicious) trace

showing its presence
12. Cyber Devil: Irremovable malware fights late-comers for the same ex-

clusive position on device
13. Covert/Private Backdoor Facilitator: Restricting access to a back-

door to their original owners/ creators using asymmetric encryption

2028 – Hacker-AI, Cyberwar 2.0+

51

Once malware generated by Hacker-AI gets access to a device, it will try
to stay on it permanently as a Cyber Ghost or Devil or via re-entering
through an exclusive backdoor that could quickly reestablish full system
access for an attacker.

Miscellaneous Misdirection/Decision Layer
14. Cyber Patsy Designer: Software creates “evidence” or diversions to

have humans stop investigating suspicious problems arising from
Hacker-AI or Cyberwar 2.0

15. Attack Synchronization/Management: Managing command and
control of Hacker-AI in a Cyberwar 2.0 or for Cybercrime 2.0 product
scenarios

Fortification and Misdirection/Decision Layer will be discussed in the next
chapter. “Hacker-AI Advanced Features and Considerations”.

Creating the above list is likely not comprehensive. If we drill down into
details, the mentioned tools may have features that could lead to new attack
opportunities or “product features” useable by cybercriminals.

Additionally, Hacker-AI operators will need to know how good each feature
is compared to comparable versions or solutions. This implies that these oper-
ators will use metrics for measuring performance, optimization, or comprehen-
siveness.

Also, the data exchange architecture between the attack units could be a
combination of centralized and decentralized components with a middleware
of temporary/redundant hubs or tool/data repositories for supplying tool fea-
tures for storing or aggregating data before the attacker’s central data repository
receives them. However, if readers would assume that operating Hacker-AI that
wages a Cyberwar 2.0 or is involved in Cybercrime 2.0 would require expensive
server resources, that expectation is wrong. Malware could steal all required re-
sources and create a redundant, distributed server that would do all the tasks
the operator would need to have done without a single purchase of server re-
sources.

What to Expect
Hacker-AI will likely be a highly automated set/system of features that helps

operators to attack any computer system easily and quickly. It does not need to
be fully autonomous or even have a mind of its own or goals. The automation
and the user interface could give users the impression that Hacker-AI
has/shows in its interface to humans some form of “Enthusiasm”. But that
motivation is likely a method or consequence to remind humans to follow up
on tasks toward their goals.

2028 – Hacker-AI, Cyberwar 2.0+

52

Hacker-AI results are provided in a form so that the attack software (mal-
ware) has or will always have the expected features, as stated by human opera-
tors. Hacker-AI will potentially have a simplified language to receive requested
features quickly, easily, and reliably.

I am not discussing or expecting (full) autonomy within Hacker-AI or that
the Hacker-AI is the sole operator of an attack. Instead, I consider the com-
bined results of the above feature list to be Hacker-AI (capabilities).

As with other modern tools, we must expect that this tool is easily adaptable
to different attack scenarios and/or applicable to other easily identifiable groups
of people (within different nations). Hacker-AI could be used in Cyberwar 2.0,
Cybercrime 2.0, and against engineers and manufacturers trying to develop/de-
ploy countermeasures. All information collected by its generated malware is ex-
pected to be easily utilizable by different features, e.g., surveillance, industrial
espionage, or by criminals who want to seed distrust in a society that is then
being turned into a law-and-order state with less individual freedom.

In the next sections, I will explore some of the details behind these features
and components. For some, this might be boring; others can’t wait to get more
details. But I hope that there are some nuggets in for everyone. I don’t want
some evil government or organization to take this as a blueprint, but cyberde-
fenders should know what kind of adversary they could face.

Preparation
Every war, including cyberwar, requires a lot of planning, exercise, and sim-

ulation to increase the probability of success. Cyberwar 2.0 is a large data oper-
ation broken down into steps that can be tested, measured, and simulated in
many details. These simulations require many reliable and detailed data collected
ahead of the operation. Some of the information is required for getting the
malware developed and tested.

Based on the comprehensiveness of the desired tech library, Hacker-AI will
learn and then create cyberweapons on demand. These cyberweapons are de-
signed, optimized, and tested by Tech-Simulators based on the requirements
for their operation. The tech simulator will show if it could deliver new or
adapted cyberweapons at the speed required in a fast-paced Cyberwar 2.0 situ-
ation. Operators must be prepared to adapt, which means the used tools must
adapt quickly and reliably; otherwise, intimidations made within the cyberwar
could fall flat due to a lack of timely follow-up.

Cyber Reconnaissance determines what technologies are around and must
be hacked; reconnaissance gives the full cyberwar simulation a realistic picture
of what could happen once cyber operations are initiated. Still, old data changes,
and new data must be integrated throughout preparation and after hostilities
are initiated. An initial comprehensive reconnaissance sweep is followed by
continuous sampling or surveillance on much smaller scales.

2028 – Hacker-AI, Cyberwar 2.0+

53

(1) Tech Library
It is certainly true for human hackers: more information increases the likeli-

hood of hacking a system and decreases the time it can be done. It is assumed
that this is valid for automated Hacking AI as well. Hackers gather as many
technical details about all technical aspects of a device they attack before nar-
rowing their focus on the most likely vulnerabilities. If starting from scratch,
pulling tech details could take days, weeks, or even months until all information
required for an attack are together; but time matters and preparation for all
types of contingencies will help tremendously. People want access to infor-
mation quickly, comprehensively, and reliably, which is why societies prepare
and maintain libraries.

To maximize Tech Library’s value, every published iteration (version) of
every software entering the market should be archived or available via link. The
same applies to hardware and technical interfaces.

I am not saying that comprehensive libraries with technical information do
not (already) exist. I am also not saying that technical information required for
hacks cannot be accessed online (comprehensively). Instead, I am just saying
that Hacker-AI must have quick access to as much technical info as possible.
For state actors, this tech library seems feasible; for regular companies or inde-
pendent hacker groups, that task is probably a too heavy lift.

Without making assumptions about how and what information is gathered,
we could assume that Hacker-AI can access a comprehensive tech library con-
taining information on all digital hardware and software within seconds.

State actors would not be limited by published information. They could use
espionage to get proprietary information from manufacturers or even scrape
databases or file repositories of experts who collected different types of tech-
nical docs or files for whatever reasons. We can assume that the top intelligence
services know where to look.

A sequence of software revisions would be used to train Hacker-AI in de-
tecting already found security vulnerabilities. Therefore, the goal is to have dif-
ferent versions of the same software and info on previous security issues as
training data.

Also, every hardware revision or iteration could and should be archived with
metadata of its potential usages or vulnerabilities. Having the actual hardware
in stock would even be better.

Using old compiler versions to generate code that showed similar vulnera-
bilities could also be used to train the AI. No piece of code (source or binary),
tools, libraries, templates, technical information (specifications or design docu-
ments), or even checklists should be considered too much or too irrelevant to
be archived and then post-processed. Currently, many archives are information
dumps. But with digitalization and AI, their owners or operators can expect
more treasures to be lifted from libraries; Hacker-AI’s Tech library could be a
driving force for getting the facilitating tools open-sourced.

2028 – Hacker-AI, Cyberwar 2.0+

54

Hackers could design the tech library for hackers and Hacker-AI. As a result,
all key pieces together will help us to understand technologies more easily. The
quality of the tech library is probably measured in how complete information is
stored in the repositories and how (fast) the search would help in understanding
technical functionality, i.e., how certain technology works, how it was designed,
and its capabilities, limitations, and requirements. As someone who did several
deep dives into technologies, finding information and organizing it was the
most difficult part. Understanding its layers, principles, and possible motivation
of optimizations/complexities was not so much.

Although the tech library does not require AI, it could make a significant
difference, if used. The tech library is a key component for Hacker-AI; it will
enable the development of new attacks on previously ignored systems quickly.
The tech library is also essential for developing reliable defenses quickly. Public
access could be a net positive as it could unleash the development of security
tools more quickly.

The quality of the tech library could be tested and measured in how often it
failed to deliver the information required in training or testing of malware gen-
erated by Hacker-AI.

(2) Cyber Reconnaissance
Gathering information about target networks or computer systems from the

outside is relatively easily detectable. However, this external method could de-
liver unreliable information because defenders could spoof attackers with false
information. More inconspicuous is to have software on phones that gather
information about infrastructure, systems, networks, and people. TikTok came
under suspicion that it might spy on users’ environments. It would probably be
known if TikTok had already done something like that. The problem is trust
that it is not doing something sneaky in later updates. Software could have spy
features for a limited time before another update removes it. But wait, the up-
date could have included the removal code.

Knowing what devices are out there and where they are located has tremen-
dous value for countries trying to control populations via surveillance. And for
hackers/criminals, network and system reconnaissance information could be-
come useful because this information can help attackers plan, simulate, and ex-
ecute a successful attack in advance. Actually, it is an essential part of cyberat-
tacks to understand target’s strengths and weaknesses while identifying vulner-
abilities for which exploits are developed before actions are taken. Also, what
contingencies must be taken into account?

Cyber Reconnaissance could map networks, identify and catalog all con-
nected devices, systems, and the relationship between these devices. Every wire-
less device broadcasts information to all devices within a local network. It is
only a matter of a few minutes until sent/received messages reveal the device

2028 – Hacker-AI, Cyberwar 2.0+

55

type, operating system versions, and potentially what additional software is in-
stalled. With smartphones, users reveal their physical locations and with whom
they are regularly in contact. Smartphones could even be used to determine via
proximity detection within (non-public) locations who are the close-by cowork-
ers. These data are considered unavoidable footprints; they can be detected and
recorded passively. Listening to network traffic could be too much (data), but
if done smartly and optimized, attackers will get what they came for without
being caught by other systems. Also, if done carefully, active scanning of net-
work ports could help to detect devices with open ports or vulnerabilities that
could be exploited for attacks.

Location information, locally stored phone numbers, and personal infor-
mation could be extracted by many apps, particularly if a business reason is used
to explain why certain permissions are required.

However, turning a smartphone app inconspicuously into a local network
scanner is more difficult. But this is possible if the local app can elevate its
permissions. Hacker-AI can generate features for this reconnaissance tool that
can grant permissions covertly after exploiting local vulnerabilities.

Additionally, social networks can be created with data from proximity de-
tection and enhanced by gathering publicly available information about the tar-
get, such as social media profiles, press releases, or public documents.

The above example with TikTok shows that Cyber Reconnaissance does not
require persistent malware or spyware. Updates of ordinary apps are enough to
generate a treasure trove of data that could be reported to regular servers as
encrypted piggybacked data. If Hacker-AI is used, app manufacturers are likely
not involved (as assumed with TikTok). It might be a comforting thought that
businesses must be forced to cooperate, but it is plausible that software manu-
facturers are unaware.

For defenders, there is probably little that can be done about Cyber Recon-
naissance. It is conceivable that national intelligence agencies, even the National
Security Agency (NSA), could be blindsided that reconnaissance happens with
devices of their or another country’s citizens. However, everyone in security
knows that smartphones in security zones are usually strictly prohibited, inde-
pendently of phone brand or installed OS.

Although cybercriminals could do Cyber Reconnaissance, it is assumed that
large-scale cyber operations usually indicate preparation for cyberwar opera-
tions. Larger cyber activities carry some risks and challenges to be flagged as
national security risks. Additionally, western governments would probably have
an eye on the legality of these operations and ensure that their actions are con-
ducted legally and ethically within the bounds of the law. But if done on foreign
territories or by foreign governments, legality is less important than being
stealthy. Preventing detection avoids alerting targets. Every detection could
compromise operation’s success.

2028 – Hacker-AI, Cyberwar 2.0+

56

Humans would use a single method, but Hacker-AI would likely ignore hu-
man’s propensity for one problem, one solution. Hacker-AI may use 100s or
1000s of different reconnaissance tools. If caught because of insufficient recon-
naissance data and detection prevention capabilities, the blame for a single
found-out version could be redirected to others. Also, Hacker-AI could learn
from failures when it uses many different approaches.

Cyber Reconnaissance is part of preparing for another (larger) goal. It will
give attackers sufficient information for planning without leaving traces of what
will happen in the next step. Doing reconnaissance should be discreet and un-
assuming. If it is detected, then it could be prevented. Hacker-AI could be used
to create reconnaissance tools. Being undetectable is its key performance pa-
rameter.

(3) Tech Simulator
Configuring systems is often a labor- and time-intensive task. Hackers and

IT departments dealing with different configurations have (certainly) created
extremely efficient and fast methods to set up any software or hardware envi-
ronment they need quickly; this is so normal that this should normally not be
mentioned. Selecting systems and testing them for vulnerability could already
be a simple menu option, done in seconds.

The tech simulator could be described as a “fishball” in which the inner
working of the studied software can be examined and monitored effortlessly
from the outside. I am not saying that this tech simulator does not exist yet, but
if it exists, it could include some features that are not available in regular virtual
machines. Applications could be reset, i.e., the entire environment would restart
at a previous time (for which a snapshot was made) - all done to save time. Then
hackers or Hacker-AI could step through until the software would reveal its
secrets at software’s lowest level.

This tech simulator is a special virtual machine that is being configured
quickly; it does not require AI. But it would likely be done by hackers for hack-
ers and Hacker-AI. So, we can assume that it will contain a lot of automation
so that all humans in this hacking process become eventually expendable.

Tools for Starting Hostilities
Preparation extends to the planning of tools for actual hostilities. These

tools are about basic capabilities like entering devices (Cyber Beachheads) and
establishing a hidden base of operation (Cyber Cradle Builder). These malware
features are based on the reliable elevation of malwares’ rights and permissions.
These features are adapted to concrete attack (battle) situations and requested
by the malware. Additionally, malware must communicate without creating sus-
picion (Cyber Whispering). All the above basic features are flexible and adapt-

2028 – Hacker-AI, Cyberwar 2.0+

57

able and respond to changing circumstances. Each activity is designed to opti-
mize in achieving its objectives. Each malware component will need to maintain
its operation, i.e., it pulls resources that it requires from the outside. It is doing
this to sustain its operations, secrecy of used tools, and maintain its effective-
ness.

None of these initial tools/features are about a specific mission. This way,
malware is a platform for capabilities, usable in different versions on different
hardware/software platforms. How these capabilities are used depends on the
operational goals.

It is certainly possible that the real malware generated by Hacker-AI would
ignore this approach and follow a different methodology. It is also possible that
the below features are included in one malware app or that it has designated
features to code on the targeted system when it requires features. In the follow-
ing, I am not predicting any tool but discuss only basic capabilities that we can
assume from malware that is hacking systems as part of a cyberwar.

(4) Cyber Beachhead
A Cyber Beachhead is the first step of malware on a device it wants to oc-

cupy. This terminology uses the association of a beachhead as a foothold estab-
lished in enemy territory. It starts as a small area that serves as a base of opera-
tions from which further advances are done to establish a more permanent
presence. In a broader sense, beachheads can also refer to situations in which
the presence in new or unfamiliar environments must be formed by attackers
that intend to expand or consolidate their position over time.

Establishing this foothold on a target system can be achieved by exploiting
a vulnerability, gaining access to a user account, or via the inconspicuous update
of software that helps to install the malware. Software that is doing these initial
activities is also called dropper.

There are click-free and click-based methods of installing malware. The
click-based method requires users to cooperate (unintentionally). Backdoors
and other vulnerabilities are often used in click-free methods to infect devices.

Once a beachhead has been established, the hacker can use it as a base of
operations to further exploit the target system or network and find a better,
safer place to store its software and get started reliably. This also involves in-
stalling additional malware, escalating privileges, or extracting sensitive data as
part of a mission. A Cyber Beachhead should be assumed to be followed by
more sophisticated attacks designed to compromise the target system further.

The idea with a beachhead is that one starts with limited resources because
it is difficult to bring in additional resources or support for maintaining or de-
fending the position. Every step must be planned out so that the vulnerable
beachhead position is not wasted or limited in its expansion by countermeas-
ures.

2028 – Hacker-AI, Cyberwar 2.0+

58

Planning Cyber Beachheads and contingencies for the follow-up steps is
part of the hacker’s preparations. Once the attacker knows details on target’s
system, he could use Hacker-AI to develop the beachhead technology predict-
ably. Depending on how this beachhead is being created, the attacker may have
used a valuable vulnerability to which he does not want to be exposed. Methods
and sources must be protected from being revealed, even if it is easy or cheap
to find new ones. After arriving at a beachhead, the facilitating tool should be
deleted, and the malware should be moved to what is later called a Cyber Cradle.

Creating beachheads is part of Hacker-AI’s preparation for different oper-
ating systems and applications. Prevention of detection is still a major goal, but
because of insufficient Cyber Reconnaissance, the beachhead could be detected.
Hacker-AI’s malware may not be able to detect immediately that the system
generates hidden data traces of its activities or that it has triggered tripwires or
entered a honey-pot. Malware would probably not enter a Cyber Beachhead
with advanced AI code because the attacker must be concerned that he got into
a honey-pot and that his capabilities could fall into enemys’ hands.

Hacker-AI would create malware code that assaults the device with info
gathered from a distance. The beachhead malware must determine quickly if it
was detected and start countermeasures if the situation is known or report the
new circumstances. The response time of Hacker-AI for learning, improving,
and adapting under conditions when Hacker-AI’s malware is about to fail could
be a critical parameter to optimize.

(5) Rights/Permissions Elevation
An important aspect of leaving the beachhead and establishing itself in some

other location on the device is that malware must gain additional rights and
permissions on devices it enters as soon as possible. It could be argued that this
step is part of the beachhead planning/tool, which is true, but the same would
apply to other follow-up steps we can expect the malware to do.

In general, I expect malware entering a device is trying to gain administrator-
level access to a computer or network system. Malware with sys-admin rights is
sometimes called a rootkit; it is designed to operate at a low level within the
system, making it difficult to detect and remove. Additionally, the sys-admin
rights allow attackers to control the system by installing additional malware or
performing actions without detection.

About 15 years ago, there was a pretty easy way of creating rootkits using
“system hooks” with a generic mechanism that allows the OS to intercept and
modify the behavior of events and actions. Preventing system hooks via a low-
level solution (“Hooksafe”) stopped almost overnight a certain type of rootkits
from emerging on devices. But this solution did not eliminate unauthorized
system access in general.

2028 – Hacker-AI, Cyberwar 2.0+

59

In this book, I don’t want to call every malware with sys-admin rights a
rootkit. One key difference between malware and rootkits is their access/per-
mission level. Malware operates at a higher level, with access to the operating
system and other software; rootkits are designed to operate at a lower level, with
access to system’s hardware and firmware. Therefore, I assume that rootkits
have the tools to continue operating even if the OS is reinstalled or the hard
drive is being formatted. This level of camouflage and avoidance will be de-
scribed as a Cyber Devil.

With rights or permissions elevation, users or processes have more privi-
leges to access resources than they normally have. This elevation is often nec-
essary to perform certain tasks for which these rights are required. For example,
users with “view” permissions could see file content on a hard drive without
changing file access settings. A user with “admin” rights has full control over
the filesystem, including granting other users view permission. Basic filesystem
operations like opening or reading files cannot have, by default, these admin
access permissions. They must be granted by an app or component using the
filesystem. An app doesn’t have these rights by default; instead, the system cre-
ates a layer with exceptions for roles or groups with rights and permissions to
bypass restrictions without giving these apps full permission. Setting and using
these exceptions requires rights - protecting these methods is a complex busi-
ness from which vulnerabilities could emerge. It is a complex interplay between
layers in the OS. We should not be surprised that developers always don’t do it
by the books; they get caught within this web of rules, permissions, exceptions,
and go for a shortcut in which they don’t need to understand all details.

Under normal circumstances, a few key features (sometimes only a single
one) are required to grant rights or permissions elevation. The process or per-
son must have the authority to grant an elevation; this is typically a process with
administrator rights. There should be a clear justification, like the need to per-
form a specific task or access a specific resource. Additionally, appropriate se-
curity control methods must be in place to prevent unauthorized elevation;
these methods also encompass methods to monitor any potential abuse of ele-
vated privileges. Once elevation happens, it is important to be documented to
track and audit who has elevated privileges and potentially why. As shown, the
rights or permissions elevation process is complex and potentially risky, but it
is required - it is bedrock OS technology. Unfortunately, we should not wonder
why we often hear about (severe) security problems.

Hacking rights or permissions elevation can be done in the protected envi-
ronment of sandboxes, i.e., virtual machines and the above tech simulator. Hu-
man hackers would do that potentially on live/production systems if they don’t
know them in detail, but doing so is risky. Repeated testing or probing of sys-
tem’s security is a relatively easily detectable anomaly that AI within defenders’
safety tools should detect.

2028 – Hacker-AI, Cyberwar 2.0+

60

For elevating rights/permissions, hackers have several approaches to exploit
vulnerabilities in gaining unauthorized access or escalating privileges. Hackers
could even try to steal reused/default or weak passwords that they could guess,
or they use social engineering to phish or trick users into divulging their login
credentials. Another method has users install trojans (malware) in which he
grants sys-admin privileges because the installer asks for these permissions.
Granting these rights is a mistake. But the bigger mistake is to have users in-
volved in these low-level security issues.

Unfortunately, protecting protection methods make rights and permissions
management a large component within the OS. But then: is the OS also pro-
tecting the protecting protection methods? Code around protection could con-
tain many vulnerabilities that have been overseen, and every new update could
create new ones. Different OS, code, contexts through user settings, and un-
concerned implementation of features in additional software packages will con-
tribute to a large pool of possible vulnerabilities to get rights or permissions of
malware elevated without authority or authorization. Humans have not found
more because finding them is labor- and time-intensive. Some criminals or in-
telligence services are paying for these 0-Day vulnerabilities high 6-figure dollar
amounts.

Due to its inherent complexity, OS and devices always have (inadvertently)
vulnerabilities. It is a reasonable hypothesis that having vulnerabilities is an
emerging property of complexity; if that hypothesis can be proven or disproven
is another matter. As long as security methods commingle with regular/user
code within complex systems, we should not expect vulnerabilities to remain
undetected and unused.

If AI is used defensively to find vulnerabilities, then they must also fix all
found problems in the deployed software - on all systems, i.e., release new re-
visions of the OS/app, before these fixes are effective. Hacker-AI could check
out the new version for new vulnerabilities at that time.

A performance criterion for Hacker-AI could be time, i.e., how fast a
Hacker-AI version or iteration could find new vulnerabilities. A secondary cri-
terion could be how many compared to other Hacker-AI instances it could de-
tect.

(6) Cyber Cradle Builder
After entering a device via the Cyber Beachhead, the initially executed code

has confirmed that it is not trapped in a honey-pot or a virtual machine from
which it cannot access the system resources on device’s hardware without going
through a non-circumventable software. By elevating its rights and permissions,
the beachhead code would find and move to a hideout called the Cyber Cradle.
I have chosen the word cradle to use the association with a device or structure
designed to support or hold something in a safe or stable position, such as a
phone, a telescope, or a machine.

2028 – Hacker-AI, Cyberwar 2.0+

61

The Cyber Cradle holds software applications in a secure location and makes
them available, i.e., to be started when necessary or triggered via hidden criteria.

Hiding malware can be done in many different ways. Malware can be dis-
guised as a legitimate program (like a trojan) installed on a computer through
normal means. Or malware could hide in legitimate software, even within a
software update, or in benign files via macros stored within user documents.
Busy readers should jump to the end of the next paragraph because I will con-
tinue with more examples.

Existing macros can be modified without changing their behavior; users
would not detect changes from what they expected. These modifications could
be done later and hidden. In general, malware can also be injected into legiti-
mate programs or processes without altering their behavior. E.g., data structures
or programming or scripting language modifications could be used. Software
modifications do not need to contain the entire malware code. They could ini-
tiate malware so that it becomes active or reactivated after self-termination -
these injections could also be done on code stored within the memory/RAM.
Other methods are rootkits, i.e., software that has modified the OS or system
components, or bootkits, i.e., software that infects the boot sector of a com-
puter’s hard drive allowing software to be loaded before the OS or security
software has started; this software is also called a bootloader. It is also possible
to have malware running in a virtual machine using software from the main OS
but hiding its activities within RAM, i.e., as operations within another app. An-
other way is to hide in custom encryption. Unique or proprietary encryption is
used to protect malware from detection and from being analyzed. Variations of
this scheme are custom communication protocols, custom file formats, and
even custom command and control servers to receive code, commands, or
transmit data. Other methods are based on a custom application programming
interface (API) and other programs or systems used to start hidden features of
the malware. Malware could also include itself in the firmware of hardware
components or within computing units used/provided by the GPU (i.e.,
graphic card). There is an almost unlimited pool of opportunities how malware
could hide.

Additional measures to hide software modification are based on removing
suspicious traces. If OS updates files, it changes the access date and file size;
these data reveal that a file was modified. However, this information could eas-
ily be changed within the corresponding filesystem data structures with the ap-
propriate permissions/rights. Imagine, malware would leave the access time and
file size the same as before; there is no hint that the file was modified. Also, as
soon as a trigger warns malware that a deep analysis has started, malware could
go into a special hiding mode. At the same time, storage hideouts are reset to
their original stages and reestablished after the scanning software is finished.
Alternatively, Hacker-AI could temporarily move its software into a beta or

2028 – Hacker-AI, Cyberwar 2.0+

62

gamma site, i.e., in prepared places where the scanning or cleaning already hap-
pened.

Different inconspicuous locations within the file system could contain
marks pointing to dead drops, i.e., places to store data secretly. Other malware
within the system can use these dead drops so that they don’t know each other
and their locations, but they can still exchange data safely.

A performance criterion for Hacker-AI could be time, i.e., how fast a
Hacker-AI version or iteration could find new cradle locations. A secondary
criterion could be how many compared to other Hacker-AI instances it could
provide.

(7) Cyber Whispering
A Firewall is security software or hardware separating a local computer or a

network of local computer systems or devices from the Internet while forming
a more protected internal network, the intranet. Unfortunately, systems within
the intranet are not protected, and firewalls are useless against malware; they
can get in touch with outside systems. The best that could be said about fire-
walls is that they try to be security conscience routers.

Malware inside the intranet can act as spyware, sending encrypted data to an
external server; a firewall is likely to do nothing. Additionally, malware could
likely receive messages from an outside source as well. Firewalls should block
or restrict access to potentially malicious traffic, but adversaries have learned to
bypass firewalls - via piggybacking. Malware is using browser traffic to camou-
flage its data exchange.

Firewalls are designed to monitor and control incoming and outgoing net-
work traffic based on predetermined security rules. They are configured to al-
low or block specific types of traffic from known malicious sources or traffic
that uses certain ports or protocols; firewalls are known systems for which ad-
versaries are trained and prepared. For advanced attackers, existing network
protection is insufficient even if firewalls are seen as part of a multi-layered
approach to security. In short: firewalls cannot prevent malware from entering
networks or devices or reduce the risk of infections. If firewall manufacturers
promise protection and security, then that is currently a marketing claim, and
the best case: you may get an apology after the next failure. Firewalls are not
proactive security tools.

Defenders must be prepared that attackers are piggybacking data in existing
connections or channels, using existing connections to transmit encrypted ma-
liciously and unauthorized without being detected.

Piggybacking data is likely done by malware and spyware operating covertly.
Diving a little deeper: Piggybacking occurs when attackers exploit legitimate
connections, such as HTTP or HTTPS, to transmit data maliciously. HTTP/(S)
are Internet communication protocols that transfer data between websites/
servers and user devices; the S is for “secure”, indicating encryption to make it

2028 – Hacker-AI, Cyberwar 2.0+

63

harder for attackers to intercept and read data. Even spyware could use HTTPS
to transmit data through a firewall via legitimate channels allowed by firewall’s
security rules.

Firewalls are computer systems with a complex architecture - although they
seem simple. They have vulnerabilities, and spyware could exploit them and
bypass their security rules. Firewalls are not decrypting passed-through content;
therefore, spyware could evade detection and avoid being blocked by a firewall
using encryption and multiple channels or messages to known servers that are
covertly already under assailant’s control. Finally, it is often overlooked that
firewalls are normal computer systems that need updates. If administrators can
do updates, attackers and their malware can also.

Applying piggybacking data on existing communication methods will over-
whelm network security. But this is nothing in comparison to what Cyber Whis-
pering could do. Normally, whispering refers to soft-voiced, discreet, or confi-
dential communication, conveying a sense of secrecy, which creates exclusivity
and privacy with another peer without being overheard by others. Whisperers
are not drawing attention or raising their low profile; they are heard by their
audience but not by others. Unexpected message timing from applications or
encrypted communication channels raises suspicion, which can be detected as
an anomaly. Cyber Whispering is Hacker-AI adapting to users’ normal commu-
nication tools/preferences while stealthily using them.

In Cyber Whispering, spyware/malware impersonates a user and sends pri-
vate communication to some other party, and removes all local traces that this
exchange ever happened. Text messengers use local databases to store data
from data exchange or communication events. Malware will know when and
how to use a system and its regular feature without detection; It knows how to
remove traces of its actions; it will also know how to use these tools “headless”,
i.e., without visual user interfaces to get messages sent or received. Cyber Whis-
pering could happen simultaneously when the user uses a hacked device or
communication app.

The advantage of impersonating humans is that it can use the security and
confidentiality of conversation tools (encryption) against unauthorized eaves-
dropping from other humans; it would not draw attention to its conversation
as long as it would not leave data traces. It would use additional encryption to
reveal nothing, even if the call/message is intercepted. I am not aware that mal-
ware uses communication tools designed for humans on this level yet. But I
wouldn’t be surprised.

Don’t get caught seems to be the only performance criterion for Cyber
Whispering. Attributing communication to malware will be difficult; attackers
could have protocols for dealing with different detection situations and making
it look like a software bug.

2028 – Hacker-AI, Cyberwar 2.0+

64

Exploitation
Once malware is deployed on devices, malware can be extended by addi-

tional features for stealing valuable data like user (access) credentials, crypto-
keys, or other data appreciated by the attacker. Having user credentials available
makes it much easier for attackers to impersonate users and gain resource access
from servers for which user credentials are required. Attackers could hack serv-
ers directly, which would increase the probability of being detected.

User devices provide many useful capabilities for attackers. Attackers can
do whatever users can with their devices (Cyber Freeloaders/Shoplifters). At-
tackers do not need to come with an army of drones; they could coerce people
to give them access to their drones, 3D printers, or even home camera used as
hidden CCTV. Additionally, like Pegasus spyware, smartphones (as our con-
stant companions) could be used as covert audio/video surveillance recorders;
the data could be pre-processed (removing irrelevant noise) and aggregated to
operational intelligence before being uploaded to the surveillance system.

(8) Cyber Masterthief and Stolen Data
Once malware with elevated rights is on a device, there are no secrets that

could be hidden from that software. User data, identified as useful, is copied
and sent to the outside with no additional data traces that this has even hap-
pened.

The most important data for attackers are encryption keys. However, for an
attacker being in the background, he does not need crypto keys; malware could
analyze the content received or sent on the device or crypto hardware directly
and report the results to the outside. So, if manufacturers use crypto-card hard-
ware to protect their transmitted content, how do they detect that this hardware
is not being misused in the background? Answer: they can’t.

Data to be stolen from computers depends solely on the motivations and
goals of the attackers. The data could be personal, financial, confidential, or
from governments. Personal information could include names, addresses,
phone numbers, social security numbers, and bio-identification data like finger-
prints, voice, or facial data. Stolen financial information like credit card num-
bers, their utilization/limits, bank account numbers with transaction amounts,
and other financial data could be used for fraud and to gauge the vulnerability
toward bribing or blackmailing.

Companies have confidential business information like trade secrets, intel-
lectual property, financial records, or other types of sensitive or secret data from
which often the destiny of a business depends. Governments have classified
documents, military secrets, and other types of sensitive data related to their
national security. Their secret data are often related to sources or methods and
should never be released.

2028 – Hacker-AI, Cyberwar 2.0+

65

Some company or governmental data are millions or even worth billions.
Adversaries are investing large amounts in getting them. Intellectual property is
not about the secrecy of publicly available information like patents, trademarks,
and copyrighted material but information on how they could be turned into
economic gains. Secret know-how is often protected with NDAs (non-disclo-
sure agreements) or secret licensing agreements that include written documents
or electronic files, allowing licensees to utilize secret technology effortlessly.

The credentials mentioned above are login information used to access sys-
tems or services; hackers and cybercriminals are targeting them to impersonate
users. Normally, credentials include a combination of username, password, se-
curity tokens, or authentication data, often provided via a secondary device.
This two (2)-factor or multi-factor authentication (2FA/MFA) assumes that an
attacker doesn’t know how this additional data record (usually a number or a
string) is delivered. 2FA/MFA assumes that the second device is not compro-
mised or is used covertly within an attack.

Once attack software has certain privileges on user devices, malware can use
additional Hacker-AI-generated instructions to extract certain data from in-
stalled software. The most generic method of attacking data or features within
existing software is to modify software with reverse code engineering. So
Hacker-AI would have created instructions to modify the installed software by
injecting additional binary code with the software. The binary-modified soft-
ware would work as if nothing has happened, but the additional instructions
would extract the intended data predictably and covertly. There is currently
nothing a user or defender could do to prevent or even detect that this hap-
pened.

The malware installed on the compromised devices doesn’t have to be
smart. It follows instructions to modify the binary code by merging and inject-
ing a few 100’s or 1,000’s byte values at the designated spots within the hacked
software; then, the malware waits until the hack delivers the result. This type of
code insertion is generic, i.e., independent of device type or OS. This attack can
be applied on any file stored in the filesystem, or it could be applied when the
file is being loaded/read or in the memory/RAM waiting to be executed on the
CPU. This code injection is very simple; it can be applied without any trace.
Can this injection be done for every binary/compiled software? (Guess what.)

With few instructions, the local malware is turned into a cyber thief, stealing
whatever was defined by the (external) attack management. The hack requires
prior access to the binary app and its OS context. It’s conceivable that develop-
ing these extract instructions could be done within seconds after the local mal-
ware uploaded previously unknown software (version) to a server where it was
being put in the tech simulator with the OS and other relevant software as re-
ported by the malware.

Hacker-AI does not need to use phishing tactics, i.e., sending fake emails,
creating fake websites, tricking people into divulging their login credentials or

2028 – Hacker-AI, Cyberwar 2.0+

66

other sensitive information, or physically stealing devices like laptops or mobile
phones to access stored data. But it is good to point to these methods and blame
users indirectly so that the real malware method remains undetected and un-
challenged.

We should assume that Hacker-AI could turn its malware into a Cyber Mas-
terthief whose level of expertise in stealing digital data or assets doesn’t fail in
any task. At the same time, it evades detection by removing data traces. This
described feature is named Cyber Masterthief because the target range of data
and digital assets it could steal is wide, and the applicability on devices, OS, and
apps is almost universal.

Not getting caught and always delivering results are the key parameters for
the Hacker-AI generating malware or instructions designed to steal targeted
data with certainty. If the generic attack software installed on the attacked de-
vice remains undetected and the data received and extracted within the attack
remains undetected, digital theft of any information will likely remain unde-
tected.

(9) Cyber Freeloader/Shoplifter
This feature is called Cyber Freeloader or Shoplifter because attacking soft-

ware takes advantage of the generosity or hospitality of devices and OS for
utilizing any device feature. Cyber Freeloaders rely on resources, i.e., contribu-
tions like computing time, memory, or network usage of others, without offer-
ing any compensation in return. One may say freeloaders take advantage of
others intentionally but without intending any harm - however, that is likely not
the case with malware in general.

The behavior of malware is probably better described as shoplifting; it is
using someone’s device resources without permission and regard for conse-
quences. Even without direct harm, using resources without permission is an
unacceptable offense and violation. It should be prevented by the OS or secu-
rity software; however, preventing this is impossible under the current software
architecture. In Cyber Shoplifting, attackers steal/use services without permis-
sion and utilize resources or may coerce people to provide access to, e.g., a 3D
printer, drone, or video camera. Lack of permission and coercion in accessing
resources are both methods that are unethical but technically easy to accom-
plish.

In a Cyberwar 2.0 scenario, I assume that the attacker avoids destruction but
uses IT devices to intimidate and exploit weaknesses. Attackers use resources
that are being made available to them by people via coercion or without per-
mission (avoiding evidence that the attacker was involved).

The main difference to the Cyber Masterthief scenario from the previous
section is that Cyber Freeloaders/Shoplifters are not primarily about stealing
data but actively utilizing devices and software features for assailant’s agenda.
The underlying technology to facilitate this feature is the same.

2028 – Hacker-AI, Cyberwar 2.0+

67

Concrete scenarios of what attackers may have in mind are related to the
use of cameras, microphones, 3D printers, or regular printers and drones by the
assailant. The attacker knows about these resources and their availability.
Drones could carry additional tools like small containers/reservoirs with or for
liquids, wireless cameras, or laser pointers. Adapters for these tools could be
3D printed under secrecy, coerced by intimidation. Some people may even be
bribed to collaborate. Accepting bribes could show within prior, less critical
tasks that these people can be recruited for other tasks.

3D printing a large set of auxiliary drone tools could be considered an im-
portant step in preparation for Cyberwar 2.0, particularly with a recruited drone
fleet that can threaten physical damage or violence against targeted people or
locations. This deployment creates fewer data traces than drones or parts
shipped to the targeted locations.

Drones are used for covert intimidation at scale. A call on someone’s
smartphone in the evening, while a drone lurks outside someone’s window, car-
rying a laser pointer and marking a spot visibly but only seen by the called per-
son. The targeted persons probably understand the seriousness of these threats
immediately, while others in the target’s surroundings might remain oblivious
to these events. With many drones in private hands, targeted intimidation could
happen concurrently to many people in an automatically planned-out, opti-
mized manner.

However, drones can be used by attackers to harm people physically.
Drones’ rotors can be used to attack people by cutting their throats or carotid
artery. Additionally, drones could carry a spray bottle with paint, flammable
liquids, improvised explosives, or other tools that could damage someone’s
property, health, or life. Controlling these attacks can be shifted between local
IT devices, allowing longer flight distances. It does not require a human opera-
tor to monitor these operations in detail; a simple command could suffice to
get it done (autonomously). It wouldn’t matter what additional resources the
drone requires; full attack instructions would be executed systematically to get
the operation done automatically.

The performance of this feature is less about not being caught because au-
tonomous drones will show their presence to the directly intimidated person. It
is about avoiding physical/digital evidence or witnesses that this event has hap-
pened.

(10) Cyber Covert/Shadow Recorder - Surveillance
Management

Smartphones have microphones and multiple cameras. They are also used
as information-platform on which many users manage large parts of their daily
digital life. Smartphones contain phone numbers, eMail addresses, social media
contacts, and chat histories stored within local databases.

2028 – Hacker-AI, Cyberwar 2.0+

68

Giving an attacker control over a smartphone could allow him to put some-
one under total surveillance. This happened already with Pegasus, spyware de-
veloped by the NSO Group, used as early as 2016, probably until now. Pegasus
was not used for mass surveillance because of its commercial business model.

The problem with smartphones is that they are much more than simply mo-
bile phones. With the control of smartphones, people can be monitored, i.e.,
observed in their activities via audio and video; their movements tracked, and
their relationship with other people detected. When smartphones appear to be
switched off, there is no way that someone without advanced equipment can
determine if the phone is really off, i.e., not operating. However, someone may
still listen in via a hot mic or camera. Edward Snowden warned us about this as
early as 2013. So we have been warned, but nothing has been done.

Many offices and security zones prohibit smartphones from being taken in.
Many security experts know about it but decided that ignoring this threat is
appropriate. They were hoping that governments would use these capabilities
only very targeted. Another hope is governments won’t use it for mass surveil-
lance because it’s too labor-intensive. With AI, this last argument is probably
outdated.

Peoples living and working environments reveal strengths, weaknesses,
fears, and concerns. If smartphones take pictures of apartments or someone’s
bookshelf or coffee table with their magazines or newspapers, additional image
processing software could create a floorplan of apartments, including vulnera-
bilities like thin window glasses or inflammable furniture or curtains. Image
analysis software could extract names from books or magazines to determine
the level of education or propensity for certain ideas. Also, knowing with whom
and where a person gets in touch and if this is regular or sporadic can help to
map out organizational hierarchies and social networks beyond social media.

The main problem with total surveillance is the huge amount of data gener-
ated. Its volume makes it almost entirely useless. But computational resources
in smartphones and local computers (e.g., a local storage/ server hub within
user’s vicinity) allow post-processing of these data. The audio does not need to
be recorded. Instead, audio could be transcribed (i.e., turned into text); these
audio-to-text features are already available on most smartphones. Software on
a hub could consolidate data via audio-, image-, and video-to-text. Automated
tagging and labeling could decrease its size further and increase the operational
value of these data significantly. The surveillance software could follow a check-
list of information it wants to get with higher priority and repetition; unneces-
sarily wasteful storage of irrelevant information could be avoided. In this set-
ting, surveillance can be done at scale, i.e., on millions of people, for almost
zero operational costs.

Without data reduction, extensive surveillanceware is impractical - the nec-
essary server capacity is not there. It can be used on a few people of significant

2028 – Hacker-AI, Cyberwar 2.0+

69

value only. Human operatives must listen to audio and video to extract essen-
tials. This huge effort is good news for countries with the rule of law because
establishing total surveillance should not be cheap or easy. If surveillance is
done (with court orders), then only in rare exceptions when severe crimes are
about to be committed or investigated.

Unfortunately, commercial products are making the post-processing of sur-
veillance data easier. Predicting progress on the ease or quality of future image
or video data extraction is hard. Improving feature performances on im-
age/video tagging is a cutting-edge research topic. It is conceivable that nation-
states have early access to the best algorithms.

Could this feature already be part of Hacker-AI? Sometimes, it is even better
to have people speculate on what reliable or accurate information a shadowy
surveillance system could have about them.

Normally, surveillance is done covertly without the knowledge of the sur-
veilled person. But sometimes, e.g., when the person should be intimidated, he
should know that he is under surveillance and that steps to disable or worsen
the quality of the surveillance are detected. Evading total surveillance would be
suspicious or could have immediate consequences.

A key parameter for the Hacker-AI is how inconspicuous it post-process
the collected information and how good the extracted data are. That this is do-
able seems to me out of the question. When total surveillance could be made
fully automated seems only a matter of time. Some governments will find ways
to justify it with public safety, but still, it is wrong, even if applied to a few
criminals. As a teaser for later chapters, smartphones could and should be made
unusable for surveillanceware. If this solution can be applied to the current
smartphone/hardware generation is difficult to tell.

