
11

1. Why do we have Vulnerabilities in our
Computers?

Why do we have vulnerability? Because we have attackers who ignore our
good intentions. So we blame attackers, hackers, and all who want to make our
lives less secure. Or we could blame the developers who put them in; they cause
our problems with broken security systems. Well, why don’t we blame the com-
puter scientists and operating system designers who made it so easy to create
and exploit vulnerabilities? This third answer option is what I would choose.

Computer soft- and hardware are prone to unauthorized misuse due to user
negligence or other technical “issues”. So there is another option: we could
blame users.

But if misuse happens because of systems’ vulnerabilities and that causes
damage directly or indirectly to its owners and users, the manufacturer should
be liable for these failures. But wait, software and computers are special. Who
is responsible? That’s not so easy to determine. There might be an embarrass-
ment and bad reputation factor from security failures, but there is no legal ac-
countability anywhere. Manufacturers fix the security and move forward. How
can that be any different?

And is it right to blame developers for having created a vulnerability? No, I
don’t think that is fair. I think vulnerabilities are normal. If we acknowledge
that, we could change the foundation slightly, resulting in less catastrophic out-
comes from vulnerabilities. We could use the Internet for that.

There is no day without multiple reportings on computer/software vulner-
abilities, on how easily attackers use exploits or damages created from data sab-
otages, ransomware or spyware. Often these reports are very specific in what
applications or systems are affected and what the consequences of this security
hole could be or have been. If we were lucky, the underlying issues were fixed;
news reports assure us that an update is already applied automatically or should
be installed manually immediately. Sometimes practical advice on what affected
users should do if no fix is available or accept that problems would happen if
they are being attacked. Because security is so broad, these reports explain pos-
sible data leaks into side channels or unexpected privacy or access-control be-
havior. Also, we can often read about the outrageous amounts of damage these
vulnerabilities have created. We have accepted this as normal.

The main takeaway from security reports for the public, there is no reliable
security and no protection from harm. All we can do is retroactively fix what

ewi
Typewriter
2028 - Hacker-AI and Cyberwar 2.0+
(Securing our Future: Proactive Resilience through Separated Security Measures)

ewi
Typewriter
ISBN: 9798375252568
Copyright © 2023 Erland Wittkotter, Ph.D. All rights reserved.

2028 – Hacker-AI, Cyberwar 2.0+

12

we are aware of. Marketing and sales pitches try to convince us if we pay for
additional protection, it will help; it often does, but is expensive protection (re-
ally) more reliable?

Acknowledging Complexity
Asking why computers have these vulnerabilities sounds strange, even igno-

rant, given the huge complexity of computer technology. As a technologist and
ex-C++ turned Python developer (for the laypeople among you, both are com-
puter languages), I am actually in awe of how few security problems we have. I
try to imagine how many lines of code have been written and updated. We have
millions of applications and code libraries. Why do we have only a few security
problems, or don’t we look hard enough?

I am unaware that anyone knows how much software has been developed
or how many different hardware platforms we have. Or how many different
system platforms are still in use. I am also unaware that anyone is keeping track
of how many standardized software solutions we have in an extremely complex
international, multi-lingual, and diversified marketplace. And creating new so-
lutions is the job of software developers. The more developer we have, the
greater the diversity.

However, it is not easy to define software developers: are they writing code
for websites, or are they engineers writing code to be compiled for a CPU? In
a google search, I found numbers between 4 and 27 million. But the exact num-
ber is unimportant; even a factor of 2 or 5 on this estimate is irrelevant. We can
assume that about 10 million people are directly involved with software devel-
opment.

And how many software libraries and executables were developed and pub-
lished? There are also scripts and macros relevant to user’s security. The most
deployed software is published in standardized packages; they are regularly
used, (thereby) tested, updated, or frozen in time. I read a large number (100
million different software files) found over the years by antivirus manufacturers.
If it is a tenth of this number, it would be too much to check out, but what if
the number of “potentially” dangerous software (files/versions) is (much)
higher? The relationship is easy: the more developers there are, the more unique
software solution we will create and get.

When talking about software, I mean modifiable instructions applied to or
used in hardware. These (instruction) processors could be microcontrollers or
CPUs. They are all unified by an operating system (OS) taking (exclusive) con-
trol. Each soft- or hardware component impacts security, i.e., they could cov-
ertly be misused by attackers, but for us consumers, both soft- and hardware
works perfectly together in serving us. And for the developers, technology is
carefully planned and architecturally designed for concrete products. Products
use standard (Swiss army knives-like) components capable of doing so much

2028 – Hacker-AI, Cyberwar 2.0+

13

more but then utilized in a very limited manner by the main components that
deliver features to users. Even if not used, removing not used 3rd party hard or
software features is considered ridiculous, too dangerous, and entirely unpre-
dictable. It is much better and more stable to leave seemingly unnecessary/ hid-
den features within the product - but this could come with a price, i.e., possible
utilization of features never being considered within the context of the product.

Additionally, software is a publication with instructions designed to run on
different hardware configurations. Furthermore, software amazingly interoper-
ates with each other via standardized interfaces. When these standards or inter-
faces were designed, anyone considered that or thought carefully about the con-
sequences of doing that. There are too many misuse scenarios, and many are
handled in other layers. Any problem arising from its application, including se-
curity-related issues, is handed down to the context that is using it. The original
designers could still claim that the utilization, even misuse, is not their respon-
sibility, although the feature utilization got much easier. This is not a critique; it
is simply how it is. However, some technologies have inherent limitations - their
use requires special permits in certain contexts or countries.

In the meantime, thousands of technical standards are available. Or is it in
the meantime ten-thousands? Each standard usually has different implementa-
tions. A lot of effort went into designing these standards, keeping them interop-
erable between different implementations, and making them unambiguous.
However, some feature descriptions were less specific, and they might be inter-
preted by different soft- or hardware implementations slightly different. Over
time these glitches are found and removed. So, over time, these standard im-
plementations do get better so that they don’t cause undue errors or damage.
But still, they are not identical; they could contain surprises, even under very
specific circumstances that an attacker could create if he knows about this vul-
nerability.

Developers often use extremely complex solutions only to get some simple
features implemented quickly. These complex solutions are like black boxes;
there is no reason to understand them or acknowledge that we could do much
more with them. But from a security point of view, they offer dormant features
that could be utilized under circumstances that will be discussed later. Right
now, they are ignored because humans look for low-hanging fruits when they
put their minds on accomplishing a goal, e.g., hacking a system.

The problem with security is that it results from software’s complexity; this
applies even in relatively simple situations. “The method of simplifying situa-
tions is a standard tool to gain confidence in the reliability of solutions.” But
this common sense statement, built from about 10 main terms, has many un-
mentioned assumptions based on what we exactly (could) mean with these 10
terms. It is even hard to develop a comprehensive list of things we should check
before we commonly agree on this statement.

2028 – Hacker-AI, Cyberwar 2.0+

14

Based on well-earned experience, most developers are looking for sur-
prises/problems in implementing other technologies. This negativity bias ex-
tends even to the tools they use within their development. All these problems
and surprises are pre-security concerns; they are only relevant for regular bugs
within the software. Detecting that software behaves unexpectedly is an art on
its own, and its removal requires fixes so that users retain their trust in that
software. Claiming or demanding that software is bug-free is unrealistic because
of the inherent complexity of software solutions.

It sounds strange, but maintaining security is much simpler than keeping
complex software bug-free. Security vulnerabilities are currently handled as
software bugs, which is true, but there is a different quality in security - pre-
venting intentional damage by some unauthorized assailant.

Who is Responsible for Vulnerabilities
I already mentioned possible culprits that could be blamed: attackers, devel-

opers, system designers, and users. However, the answer to who is responsible
and thereby obligated to provide a fix is not easy.

Developers write software, and they test their work products. Developers
should understand what problem their solution must face, and they should be
educated and vigilant enough to avoid problems. Therefore, if someone could
be made responsible than the developers who wrote to code. But this seems to
be too shortsighted and superficial.

Developers include backdoors, and they are using them in their testing.
Some of them are forgotten or insufficiently removed. Additionally, developers
use, accept or define assumptions that could easily be faked or simulated by
attackers (spoofed) when they circumvent expected methods of protection or
authentication. Leaving these kinds of vulnerabilities in the code is certainly the
developers’ fault and shouldn’t happen.

Educating themselves about the assumptions of protection or how it is be-
ing conceptually implemented are essential methods within the responsibility of
developers when they implement or improve security. Additionally, some com-
panies like Microsoft have developers working in teams of two, one writing the
code while the other observing and being skeptical about possible problems.
Still, software writing is a human endeavor with many flaws. Therefore, auto-
mated code review software will detect patterns that could lead to vulnerabili-
ties.

The question we could ask is: is that enough? It helps, but vulnerabilities are
still found independently. Unfortunately, code-review tools cannot be used to
remove (all) vulnerabilities proactively. Some optimists may hope that Artificial
Intelligence (AI) will improve these review tools and remove them all. Finding
some vulnerabilities is achievable while removing all vulnerabilities is an entirely
different challenge.

2028 – Hacker-AI, Cyberwar 2.0+

15

Most algorithms are written with expectations that they are not being mis-
used unexpectedly. Moreover, it is hard for developers to know or decide what
constitutes misuse; this depends too often on the context. The required data
for misuse determination could be outside the algorithm’s scope, and then how
could the extended algorithm know that the received data are genuine and not
being manipulated? Because the attacker knows what data the algorithm is us-
ing, it is for developers a waste to start an arms race with assailants on misuse
detection.

Instead, security-related concerns are simplified into simple true/false deci-
sions; thereby, more complex security problems are kept outside. Examples:
Can a user read, modify or execute a file? Is a user a member of a user group
associated with some of these rights? Does a user has permission to use re-
stricted resources? Etc.

Ideally, there should be no methods to bypass or circumvent these re-
strictions. However, impersonating users with covertly stolen credentials is do-
ing that, and it is comparatively easy. There are even three categories of attacks
on how this can be done:

● users’ negligence in protecting their credentials or passwords is making
this too often too easy, or

● technical flaws help attackers to get their rights/permissions elevated
or role changed or

● users were duped into providing access credentials unknowingly to the
assailant.

Unfortunately, attackers could utilize too many technical or deceptive
measures without following the required identification and authentication steps.
Access control could be a single source of failure. The system will be in serious
trouble if this security barrier is breached.

Because this book is not designed to educate readers on hacking, I mention
only some high-level concepts that could do the trick for the attackers. The
most direct and popular way is to gain sysadmin or system rights for a task, e.g.,
by starting it as a sub-task that would reduce inherent rights from its parent
process. Another way is to interfere with or manipulate the code responsible
for denying access. The last method is much more difficult but still doable.

The key takeaway should be that once the attacker gains sysadmin rights, no
protection could hold him back from doing whatever he wants.

Unfortunately, too many methods give attackers these rights or permissions.
Cybersecurity tries to get these methods under their control by using additional
information to determine when it hurts/harms users and when it is done to
enable or benefit users. If these rules are too flexible or generous, they could
also be misused by attackers. The problem is that too much happens in the
shadow, covertly, and users do not need to be involved by default when it

2028 – Hacker-AI, Cyberwar 2.0+

16

comes to security - because decisions/tasks must be automated. However, de-
fenders have a chance when tasks are detected as “anomalies”. But this anomaly
detection is based on (fixed) rules that could be ignored or bypassed. Using AI
and pattern learning, attackers could determine which rule can be manipulated
by desensitizing the learning algorithm.

Back to the question: Who is responsible for computer vulnerabilities and
should mitigate them? It seems to be a matter of opinion. I would propose:
vulnerabilities should be accepted, but not their exploits. We already do this,
but we are not serious enough about that approach. This implies that we should
better focus on detecting and removing exploits of computer vulnerabilities
with a combination of technical, organizational, and societal measures. Prevent-
ing exploits (the how is explained in later chapters) is the primary line of de-
fense. Detecting and fixing vulnerabilities is the second line because it takes
more time.

On the technical side, we already make it more difficult for attackers to find
and exploit vulnerabilities in the first place. This protection is done with regular
updates or patches, vulnerability assessments, and security tools and technolo-
gies, such as firewalls, intrusion detection systems, and antivirus software. The-
oretically, proactively identifying and addressing vulnerabilities could make it
more difficult for attackers to gain access and exploit them. But how can we
proactively identify vulnerabilities? Some hope AI can do that. In reality, we are
always in a race where we react to vulnerabilities and let many attackers get away
with what they did with the vulnerabilities. We don’t know who did an attack
or who came up with the exploit without telling us about it. What if that is being
changed? (More about that later)

By detecting and responding to attacks/exploits quickly, organizations could
minimize their impact and potentially prevent attackers from achieving their
goals. Additionally, organizations could implement measures to mitigate the ef-
fects of a successful attack via recovery plans and data backup systems to min-
imize the damage caused by an exploit. But these measures are better suited as
redundant backups when the primary security has failed.

Are users responsible for vulnerabilities? On the organizational side, aware-
ness of the dangers of vulnerabilities and exploits among employees, customers,
and other stakeholders is already being raised. Users are warned not to fall for
traps set out by attackers. By educating people, organizations hope to create a
culture of security that reduces the likelihood of successful attacks. Many busi-
nesses implement policies and procedures to ensure that employees, contrac-
tors, and other stakeholders know their responsibilities and obligations con-
cerning cybersecurity. Some people in cybersecurity may think it is good to have
this culture of mistrust. I disagree; humans are then only forced to compensate
for technical insufficiencies. Technology should facilitate sufficient and timely
transparency and anomaly detection if there is a reason for mistrust; it should
make our life easier and not unnecessarily more difficult and distrustful.

2028 – Hacker-AI, Cyberwar 2.0+

17

Then on the societal level, we should increase the legal and regulatory pres-
sure on organizations and individuals who use exploits to gain unauthorized
access to systems or steal sensitive information. By enacting and enforcing laws
that criminalize exploits, governments can create a disincentive for attackers by
increasing the risks of getting caught, punished, or excluded from those who
could provide solutions or services. Some countries have these laws but catch-
ing the perpetrator is the bottleneck in making criminalization more deterrent.
However, we don’t want the good guys among the hackers discouraged from
finding vulnerabilities.

Creating a vulnerability happens accidentally while developing and using ex-
ploits is done intentionally; therefore, making developers responsible for vul-
nerabilities or even blaming them for that is wrong. Developers are helping us
to become more efficient with technology. Much better is to punish the use of
exploits with a multi-faceted approach that combines technical, organizational,
and societal measures to detect who is using it intentionally to benefit from it.
Identifying and fixing vulnerabilities could reduce the incidence rate, but de-
tecting who used vulnerabilities intentionally creates a more effective deter-
rence. Because then, consequences of successful attacks based on legal and reg-
ulatory pressure on attackers, organizations, and individuals can make exploits
more difficult and less attractive.

Layers and Components
Layering and components are two key concepts in software engineering that

simplify the development process. Layering involves organizing different parts
of a software system into distinct layers, where each layer has a specific respon-
sibility and communicates with other layers through well-defined interfaces.
This reduces complexity by allowing developers to focus on one layer at a time
and providing clear boundaries between parts of the system.

Components are self-contained units of functionality that can be easily re-
used in different parts of a software system. By breaking a complex system into
smaller, modular components, developers can make the system more flexible
and easier to maintain. Components can be developed, enhanced, and tested
independently. It makes software easier to update. Also, we can improve or
covertly modify individual system parts without affecting the rest (which is
good and bad).

In both layers and components, interfaces are critical in how software inter-
acts with each other. They define the boundaries between layers or components
and what/how data and functionality are called. With interfaces, features are
isolated from each other so that they can be developed, enhanced, and tested
more independently. Components are highly cohesive, i.e., they contain only
related features. This helps to make components more modular and easier to

2028 – Hacker-AI, Cyberwar 2.0+

18

understand, maintain, and reuse. Reusability is easier when components are de-
signed with more generic concepts. Reusable code is more flexible in different
contexts and applications, which helps developers to save time and effort when
building new systems.

Access restrictions to interfaces in layers and components play a crucial role
in protecting software systems. These restrictions isolate layers or components
from each other, making it more difficult for attackers to penetrate systems.
With reusability, security features are more consistent throughout the system
rather when implemented on an ad-hoc basis.

While layering and components can provide security benefits by establishing
clear boundaries and making it harder for less sophisticated attackers to pene-
trate a system, they can also make it easier for advanced attackers to reverse
engineer the system and identify vulnerabilities when they bypass these re-
strictions.

Reverse code engineering, which involves analyzing the source code of a
software application to understand how it works, can be used by attackers to
identify vulnerabilities or make modifications to the system more easily. Once
reverse code engineering is mastered by attackers, it is currently hard to imagine
that any restriction could constrain them. On a positive note: there are methods
to contain attackers that use reverse engineering - discussed later.

Could OS Security be Strong Enough to Protect
Devices?

In July 2022, Apple announced for their iOS 16 iPhones a “Lockdown
Mode” as an “extreme, optional level of security for the very few users” who
may be “personally targeted by some of the most sophisticated digital threats”
[https://www.apple.com/newsroom/2022/07/apple-expands-commitment-
to-protect-users-from-mercenary-spyware/].

I am regularly asked if Apple could protect their phones from malware or
spyware threats. Unfortunately, this question cannot be answered fairly because
Apple could have and use some secret breakthrough technologies to deliver on
this promise. However, based on the publicly available information, there are
not enough details to answer this question positively. The measure they have to
announce within the Lockdown Mode is very reasonable, but they do not seem
sufficient.

There is a simple rule in security: A single vulnerability makes all existing
security measures useless. Can they guarantee that there is not a single vulnera-
bility exploitable by hackers? I have not seen that Apple is trying to provide that
proof. Their new security approach is certainly based on solid engineering, but
I have not seen anything indicating they have a breakthrough.

We know from click-free vulnerabilities in malware like Pegasus from NSO-
Group. Pegasus is a commercial smartphone-based malware for governments

https://www.apple.com/newsroom/2022/07/apple-expands-commitment

2028 – Hacker-AI, Cyberwar 2.0+

19

to spy on diplomats, human rights activists, dissidents, journalists, or legiti-
mately applied to criminals. NSO sold this software not as a widespread mal-
ware to leave hidden backdoors on all smartphones but as a solution to be used
against a few people on the radar of governments. Still, click-free malware can
infect a device without the need for a user to click on a link or take any other
action; they are based on exploiting vulnerabilities in system’s software or op-
erating system - the problem is not limited to Pegasus alone.

For iOS 14 and iOS 15, I saw several release notes with “leads to arbitrary
code execution”, which is an admission that the attacker gained sysadmin rights
that they could have used to plant backdoors that are even usable after these
security fixes were made. These security fixes remove known malware and pre-
vent the vulnerability used by attackers in other exploits as well.

In anticipation of a more extended discussion within the next chapter, back-
doors could be implemented in operating systems so that no software test could
detect them. There are good reasons for having features that could facilitate
this.

The biggest issue that I have with Lockdown is:
1. Would Lockdown detect malware already installed on the phone?
2. How well are (rarely used) exception-handling routines protected

against exploitations?
3. Why does Apple think that only a few people (from exceptional

groups) are prone to advanced malware?
I will return to some of these questions later. But I want to point out here

other Pegasus-type malware might have left backdoors on phones so that at-
tackers could use compromised devices much faster and more effortlessly. Ad-
ditionally, the assumption that Pegasus software could only be used on a few
users’ smartphones is wishful thinking if nations are planning winnable
cyberwars. The limitation of Pegasus was due to the huge amount of data that
needed to be analyzed in the background manually. With more data reduction,
automation, and anomaly detection tools, (total) mass surveillance via Pegasus-
type spyware could already be a reality.

Without strong OS/device security, there is no protection against surveil-
lance and misuse. Regulation would only handcuff the good guys to gain the
knowledge exploited by the bad guys.

